联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 OA系统
科技信息
The shape of things to c...
A major step toward non-...
'Magnetic topological in...
基于二维硒氧化铋材料的超...
南科大徐保民AM:聚合物空...
东华大学史向阳团队:树状...
《自然·通讯》吉林大学张...
Advanced Biosystems: 通...
磷酸三甲酯作为钠离子双碳...
青岛能源所发现石墨炔可作...
电热可控的硅基超表面宽带...
宏量化制造的全肟化纳米纤...
兼具阻隔多硫化物和抑制锂...
Joule 封面:模拟光合作用...
电化学分析揭秘DNA与单壁...
现在位置:首页>新闻动态>科技信息
Researchers report a temperature-responsive gel that absorbs and releases moisture
2018-11-21 10:31:37 | 【 【打印】【关闭】
  
Illustration of the main concepts described in this paper. Credit: Kansai University

  Takashi Miyata at Kansai University and colleagues report in Nature Communications a temperature-responsive gel that absorbs moisture and, when heated, releases it in the form of water. Applications include energy-efficient materials for condensing moisture into water.

  Hydrogels are highly absorbent materials, and when they incorporate polymer chains that respond to external stimuli(such as pH or temperature) they that can display abrupt volume changes when the surrounding conditions change. Such stimuli-responsive hydrogels have a range of potential applications, for example in drug delivery systems, sensors, cell culture and so on.

  In particular, thermo-responsive hydrogels kept in an aqueous solution undergo a reversible phase transition above a critical temperature that causes a transition from a hydrated to a dehydrated state, which results in a drastic shrinking of the gel. Many studies exist on hydrogels that respond to changes in temperature while in solution, but the behavior of the dried gelsin air has not been studied yet.

  Now, Takashi Miyata at Kansai University and colleagues present in a study published in Nature Communications a temperature-responsive gel that absorbs moisture and, when heated, releases it in the form of water.

  The gel contains a thermo-responsive polymer and a hydrophilic component (sodium alginate) that boosts water absorption. The transition temperature for this material is close to room temperature, 32 °C. When exposed to high relative humidity (80%) at 25°C, the gel absorbs 0.6 g of water per gram and swells. The presence of water on the polymer chains causes them to respond to temperature in a similar way as hydrogels immersed in solution, so that the chains, that are initially hydrophilic, change to hydrophobic with raising temperature. When this happens, the water molecules desorb and condense into liquid water. Indeed, as the sample is heated to a temperature of up to 50°C, water appears on its surface, and its amount increases sizably for temperatures above 40 °C.

  Thus the gel acts as a dehumidifier but, unlike traditional dehumidifiers that require energy to evaporate the absorbed water to regenerate the material, and then to condense it for collection, the gel can condense water simply in response to a small temperature change (from 25 °C to 50 °C). Regeneration of the material and collection of the water can thus be achieved using very little energy. Further optimization is still needed, but thermo-responsive gels like the one presented in this paper could find applications as energy-efficient materials for condensing moisture into water.

  Hydrogel 

  A hydrogel is a polymeric network formed by hydrophilic polymer chains; the hydrophilicity of the chains means that when immersed in waters hydrogels can absorb big quantities of water (a hydrogel can contain more than 90% water), which causes the gel to swell, maintaining its 3-D structure. Hydrogels are used in many contexts, for example as scaffolds in tissue engineering, for sustained drug delivery or, if they contain additive sensitive to specific molecules, as biosensors.

来源:phys.org https://phys.org/news/2018-11-temperature-responsive-gel-absorbs-moisture.html

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号-1
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899