联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
Researchers improve cond...
清华大学在力学结构超材料...
科学家发明光催化水裂解新...
摩擦/力致发光研究取得进展
Physicists uncover why n...
New photodetector could ...
科学家为设计手性发光材料...
二维本征铁磁半导体研究获...
3D打印材料可磁化形变
Nobarrier to application...
Turbocharge for lithium ...
层状钒酸钾K0.5V2O5用于非...
石墨烯等离激元寿命的新突破
西安交大多模式微纳平台实...
The physics of better ba...
现在位置:首页>新闻动态>科技信息
Why gold-palladium alloys are better than palladium for hydrogen storage
2018-07-12 08:58:35 | 【 【打印】【关闭】

The Au atoms destabilize chemisorbed hydrogen, thus increasing their energy and reducing the barrier. Credit: 2018 Shohei Ogura, Institute of Industrial Science, The University of Tokyo

  Materials that absorb hydrogen are used for hydrogen storage and purification, thus serving as clean energy carriers. The best-known hydrogen absorber, palladium, can be improved by alloying it with gold.

  New research led by The University of Tokyo Institute of Industrial Science explains for the first time how gold makes such a difference, which will be valuable for fine-tuning further improvements.

  The first step in hydrogen storage is chemisorption, wherein gaseous H2 collides with palladium and adsorbs (sticks) to the surface. Secondly, the chemisorbed H atoms diffuse into the sub-surface, several nanometers deep. A recent article published inProceedings of the National Academy of Sciences (PNAS) reports that the group focused on this slow second step, which is the bottleneck to the overall process.

  In pure palladium, only around 1 in 1,000 of the H2 molecules that collide with the metal actually absorb into the interior. Hence, only these can be stored as energy carriers. However, when the palladium surface is alloyed with gold, absorption is over 40 times faster.

  It is vital to get the amount of gold just right—hydrogen absorption is maximized when the number of gold atoms is slightly less than half (0.4) of a single monolayer of palladium, according to the study. This was discovered by thermal desorption spectroscopy, and by depth-measurement of the H atoms using gamma-ray emissions.

  "We wanted to know what role gold plays," study first author Kazuhiro Namba says. "The gold atoms are mostly at the alloy surface. However, our results showed that hydrogen storage is improved even below this depth, in pure palladium. Therefore, gold must be accelerating the diffusion of hydrogen into the sub-surface, rather than improving its solubility."

  This diffusion acts like a typical chemical reaction—its rate is determined by the energy barrier, i.e. the hurdle that the H atoms must overcome to penetrate palladium. The barrier height is the gap between the energies of the chemisorbed H atoms and the transition state they must pass through to reach the first sub-surface site.

  According to density functional theory (DFT) calculations, the gold atoms destabilize chemisorbed hydrogen, thus increasing their energy and reducing the barrier. By making the surface a less stable environment for H atoms, this encourages them to penetrate more quickly into deeper sites, instead of lingering at the surface. Photoemission spectroscopy suggests that gold atoms push the energy of the palladium electrons downward, weakening their ability to chemisorb hydrogen.

  However, the weakly chemisorbed H atoms are also more likely to simply desorb from the surface; i.e., return to the gas phase. This unwanted process explains why hydrogen storage is maximized with just 0.4 monolayers of gold—if any more gold is added, the desorption of hydrogen outpaces its diffusion into palladium.

  "Our study reveals, at the electronic level, how gold alloying controls hydrogen absorption," co-author Shohei Ogura says. "This will help us to design better hydrogen storage materials, which will play a role in carbon-neutral energy transport, as well as solid catalysts for chemical reactions, which often depend onsurface-bound hydrogen."

   Explore further: Researchers develop extremely sensitive hydrogen sensor 

  More information: Kazuhiro Namba el al., "Acceleration of hydrogen absorption by palladium through surface alloying with gold," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1800412115    

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899