联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
清华大学在力学结构超材料...
科学家发明光催化水裂解新...
摩擦/力致发光研究取得进展
Physicists uncover why n...
New photodetector could ...
科学家为设计手性发光材料...
二维本征铁磁半导体研究获...
3D打印材料可磁化形变
Nobarrier to application...
Turbocharge for lithium ...
层状钒酸钾K0.5V2O5用于非...
石墨烯等离激元寿命的新突破
西安交大多模式微纳平台实...
The physics of better ba...
Research shows graphene ...
现在位置:首页>新闻动态>科技信息
Research shows graphene forms electrically charged crinkles
2018-06-27 08:28:20 | 【 【打印】【关闭】

 

Stacks of graphene tend to form saw-tooth crinkles when compressed. Those crinkles have an electrical charge that could be useful in studying DNA or guiding nanoscale self-assembly. Credit: Kim Lab / Brown University

  Researchers from Brown University have discovered another peculiar and potentially useful property of graphene, one-atom-thick sheets of carbon, that could be useful in guiding nanoscale self-assembly or in analyzing DNA or other biomolecules.

  A study published in Proceedings of the Royal Society Ademonstrates mathematically what happens to stacks of graphene sheets under slight lateral compression—a gentle squeeze from their sides. Rather than forming smooth, gently sloping warps and wrinkles across the surface, the researchers show that layered graphene forms sharp, saw-tooth kinks that turn out to have interesting electrical properties.

  "We call these quantum flexoelectric crinkles," said Kyung-Suk Kim, a professor in Brown's School of Engineering and the paper's senior author. "What's interesting about them is that each crinkle produces a remarkably thin line of intense electrical charge across the surface, which we think could be useful in a variety of applications."

  The charge, Kim says, is generated by the quantum behavior of electrons surrounding the carbon atoms in the graphene lattice. When the atomic layer is bent, the electron cloud becomes concentrated either above or below the layer plane. That electron concentration causes the bend to localize into a sharp point, and produces a line of electrical charge roughly one nanometer wide and running the length of the crinkle. The charge is negative across the tip of an upraised ridge and positive along the bottom of a valley.

  That electrical charge, Kim and his colleagues say, could be quite useful. It could, for example, be used to direct nanoscale self-assembly. The charged crinkles attract particles with an opposite charge, causing them to assemble along crinkle ridges or valleys. In fact, Kim says, particle assembly along crinkles has already been observed in previous experiments, but at the time the observations lacked a clear explanation.

  Those previous experiments involved graphene sheets and buckyballs—soccer-ball-shaped molecules formed by 60 carbon atoms. Researchers dumped buckyballs onto different kinds of graphene sheets and observed how they dispersed. In most cases, the buckyballs spread out randomly on a layer of graphene like marbles dropped on smooth wooden floor. But on one particular type of multilayer graphene known as HOPG, the balls would spontaneously assemble into straight chains stretching across the surface. Kim thinks flexoelectric crinkles can explain that strange behavior.

  "We know that HOPG naturally forms crinkles when it's produced," Kim said. "What we think is happening is that the line charge created by the crinkles causes the buckyballs, which have an electric dipole near the line charge, to line up."

  Similarly, strange behaviors have been seen in experiments with biomolecules like DNA and RNA on graphene. The molecules sometimes arrange themselves in peculiar patterns rather than flopping out randomly as one might expect. Kim and colleagues think that these effects can be traced to crinkles as well. Most biomolecules have an inherent negative electrical charge, which causes them to line up along positively charged crinkle valleys.

  It might be possible to engineer crinkled surfaces to take full advantage of the flexoelectric effect. For example, Kim envisions a crinkled surface that causes DNA molecules to be stretched out in straight lines making them easier to sequence.

  "Now that we understand why these molecules line up the way they do, we can think about making graphene surfaces with particular crinkle patterns to manipulate molecules in specific ways," Kim said.

  Kim's lab at Brown has been working for years on nanoscale wrinkles, crinkles, creases and folds. They've shown that the formation of these structures can be carefully controlled, bolstering the possibility of crinkled graphene tailored to a variety of applications.

  Explore further: Novel self-assembly can tune the electronic properties of graphene 

  More information: Critical curvature localization in graphene. I. Quantum-flexoelectricity effect,Proceedings of the Royal Society A, rspa.royalsocietypublishing.or … .1098/rspa.2018.0054  

 

  Journal reference: Proceedings of the Royal Society A 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899