联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
New sodium-ion electroly...
纳米金刚石催化过硫酸盐除...
凝固-非晶晶化法制备YAG基...
我国科学家创新研发第三类...
Light 'relaxes' crystal ...
Team aims to curb format...
新途径!集成于硅芯片上的...
关于超薄单晶铅膜界面超导...
中科院大化所合成新型发光...
Sodium-ion battery packs...
How do very small partic...
普渡与斯坦福合作研发超快...
三明治结构rGO-VS2/S复合...
青岛能源所在石墨炔基高效...
New cellular insights in...
现在位置:首页>新闻动态>科技信息
Superacids are good medicine for super thin semiconductors
2018-04-11 08:47:40 | 【 【打印】【关闭】

(Top) Illustration shows a 2-D molybdenum disulfide (MoS2) semiconductor with structural defects such as missing surface atoms. (Bottom) Treating the 2-D semiconductor with a superacid heals structural defects and improves the electronic performance of the material.

  Designing wearable sensors or other devices demands robust, flexible electronics. Extremely thin films, just one atom thick, such as molybdenum disulfide (MoS2), hold promise. Large-area synthesis of these materials is required for their commercialization. But today's thin films are plagued by structural defects. These defects degrade device performance. Scientists at New York University and the Center for Functional Nanomaterials have implemented a superacid treatment for healing defects in thin MoS2 films. They showed that this straightforward chemical treatment is compatible with electronic device fabrication. Also, the process boosts device performance by reducing the density of defects in the material.

  Wearable computers are an emerging trend. To capitalize on this trend, industry needs mechanically flexible devices. Thin films can enable power-efficient and high-speed devices. This work is a vital step toward realizing wearable devices.

  The atomically thin nature of layered 2-D semiconductors gives rise to a gamut of unique physical properties, which often do not exist in traditional bulk semiconductors such as silicon. These physical properties can enable a new family of devices, from sensors to logic switches, that have superior performance compared with their conventional counterparts. Producing defect-free 2-D materials on a large scale underpins the translation of basic scientific studies into real products. However, synthetic 2-D materials are plagued with large numbers of defects that suppress many of their useful properties. In the ongoing quest to achieve large defect-free 2-D semiconductors, scientists at New York University have shown that a superacid treatment boosts the performance of devices made from monolayer 2-D MoS2. In collaboration with scientists at the Center for Functional Nanomaterials, they used an advanced material characterization technique, called Nano-Auger, to study the structure of 2-D MoS2 on the atomic scale. They discovered that the superacid treatment is mostly effective in healing defects in the regions of MoS2 that have missing sulfur atoms.

  These findings are important steps toward realizing high-performance devices from synthetic 2-D semiconductors.

   Explore further: Understanding the impact of defects on the properties of MoS2 

  More information: Abdullah Alharbi et al. Material and device properties of superacid-treated monolayer molybdenum disulfide, Applied Physics Letters (2017). DOI: 10.1063/1.4974046  

  Journal reference: Applied Physics Letters    

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899