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A B S T R A C T   

Fiber-based triboelectric nanogenerators (TENGs) possess advantages of good air permeability, excellent me
chanical compliance, and easy integration into electronic textiles, and have wide application prospects in new- 
generation wearable electronics. However, few studies show the capability to unite favorable merits of excellent 
stretchability, high electrical generation, and conversion of multiple mechanical stimuli into a single fiber device. 
Here, we proposed a helically structured fiber-based triboelectric nanogenerator (HS-TENG) using Ti3C2Tx as the 
triboelectric coating. The unique architecture endows the HS-TENG with large stretchability (~ 200 % strain), 
and high electric output (52 V, 1.5 µA, 4.2 μW) under compression for a 2 cm long device, superior to most 
stretchable triboelectric yarns. The HS-TENG also realizes multi-mode (i.e., stretch, press, twist, and bend) 
mechano-electrical conversion. The HS-TENG fiber can be integrated into electronic textiles (E-textiles) for 
versatile applications, including an insole for energy harvesting, a kneepad for motion sensing, and a glove for 
wireless signal control. This work provides new capabilities for multifunctional wearable systems.   

1. Introduction 

In recent years, wearable and multifunctional biomechanical sensors 
have aroused increasing attention due to their application potential in 
various fields such as healthcare, sports entertainment, and military 
defense [1–8]. However, their pervasive adoption in daily life is limited 
by the need to derive power from bulky and rigid batteries, as they not 
only reduce wearing comfort and portability, but also restrict the 
long-time outdoor service [9–15]. Therefore, a self-powered operation is 
highly desired in the design of wearable sensors for use in practical 
scenarios. Triboelectric nanogenerators (TENGs) represent a promising 
self-powered strategy for their high energy-harvesting efficiency, simple 
structure, design freedom in form-factor, and non-contamination to 

environments [5,16–20]. Highly conducting and electronegative TENG 
materials that support the generation of opposite triboelectric polarities 
and high currents are imperative for effectively harvesting electric 
power from biomechanical energy [21]. Among the family of electrically 
conducting materials, Ti3C2Tx are triboelectrically more negative than 
poly tetrafluoroethylene (One of the most triboelectrically negative 
materials, which has been widely used in TENGs for achieving opposite 
triboelectric polarities [22]). Among different types of TENGs, 
fiber-based TENGs possess advantages of good air permeability, excel
lent mechanical compliance, outstanding fatigue resistance, and easy 
integration into electronic textiles [5,11,23–26]. These merits make 
fiber-based TENGs especially suitable for wearable electronics. Despite 
considerable progress in fiber-based TENGs [3,27–30], there still exist 
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limitations that hinder their extensive use. 
One challenge is that the energy generation performance might 

decrease seriously due to large device deformation caused by human 
body movements (typically when exceed 30 % strain level): large strain 
can damage the electrode material and lead to permanent increase of 
electrical resistance [13,31–33]. This problem can be alleviated by 
selecting materials with good ductility and elaborate structural design 
[2,31,33–37]. For one thing, the ideal flexible electrodes are percolation 
networks composed of low dimensional conductive materials such as 
silver nanowires (AgNWs), carbon black, carbon nanotubes (CNTs) [34, 
38–40]. To protect the fragile conductive networks, flexible polymers, 
such as polydimethylsiloxane (PDMS), poly tetrafluoroethylene (PTFE), 
and polymethyl methacrylate (PMMA), were exploited as encapsulating 
layer, which also served as the friction material [34,41–43]. However, 
the encapsulated electrodes are still unable to withstand large strains. 
For another, the fiber-based TENGs is usually designed as a structure 
with an inner core and an outer sheath [34,38,44]. A fiber-based 
conductive composite material with a coaxial structure reported by 
Dong et al. has high stretchability and excellent conductivity stability 
[32]. However, the energy harvested from human motion or surround
ing environments (85 nW/cm2 for a single fiber) is not high enough to 
power wearable electronics[45]. 

Another challenge is that most of these generators exhibited limited 
capability in harvesting multiple forms of mechanical energy (usually 
limited to pressing and bending), which inevitably led to waste of 
biomechanical energy [46–48]. Similarly, when such wearable genera
tors were utilized for self-powered motion detection, their sensing range 
was frequently limited to a single type of human activity, due to the 
deficiency in sensing functionality [49–51]. With these concerns in 
mind, a wearable sensor for capturing various forms of mechanical 
stimuli, is particularly desirable. 

To overcome these challenges, we proposed a flexible core-shell 
helically structured triboelectric nanogenerator (HS-TENG) using 
Ti3C2Tx as the triboelectric coating. The unique core-shell helical 

structure enables the HS-TENG to not only maintain high power- 
generating performance (2.1 μW/cm) even under huge deformation 
(~ 200 % strain), but also succeed in converting multiple mechanical 
stimuli, including pressing, bending, stretching, and twisting, into 
electrical output. The electrical power can be easily scaled up by 
extending the length of the HS-TENG fiber: an open-circuit voltage of 
160 V was achieved by pressing a meandering fiber of 10 cm in length, 
and lit up 165 commercial light-emitting diodes (LEDs). Such versatile 
HS-TENG fibers allow the convenient integration into smart electronic 
textiles (E-textiles). We demonstrated a series of HS-TENG enabled E- 
textiles, including a glove for signal control, a kneepad for motion 
sensing, and an insole for energy harvesting. 

2. Results and discussion 

As shown in Fig. 1a, we propose a novel helically structured tribo
electric nanogenerator (HS-TENG). The HS-TENG consists of a core fiber 
with AgNW/Ti3C2Tx/PEDOT: PSS coating on the surface and a sand
wiched Ecoflex/AgNW-fabric/Ecoflex helical outer sheath. The core 
fiber was selected as an elastic scaffold, composed of a highly elastic (up 
to 1077 % tensile strain, Fig. S1) polyurethane (PU) inner fiber and 
polyethylene terephthalate (PET) fibers winding around helically 
(Fig. S2). One reason to choose it is that the slippage of the woven PET 
layer during tensile deformation can accommodate the tensile strain, 
rather than direct stretch of PET fibers [52]. The good elastic resilience 
of this core fiber is validated by A multi-cycle load-unload test at a fixed 
strain of 120 % for 10 cycles (Fig. S3), which shows almost overlapped 
curves. Another is that the braided woven structure with increased 
specific surface area has good hygroscopicity. Therefore, the conductive 
materials (AgNWs and Ti3C2Tx) can be firmly adsorbed on the surface of 
the core fiber by a simple dip-coating method. The thickness of the 
conductive layer can be controlled by the concentration of the AgNW 
dispersion and dip-coating cycles. AgNWs were firstly adsorbed on the 
surface of the core fiber and formed a dense conductive network. It is 

Fig. 1. The structure design and multifunctionality of the HS-TENG. (a) Schematic illustration of the structure of the HS-TENG. (b) Photograph images of the flexible 
HS-TENG, which can be (c) bent and (d) stretched to 200% tensile strain (e) The photograph of HS-TENG collected on reeling roller. (f) Simulation results of the 
electric potential distribution of different stimuli (bend, press, stretch, twist). (g) Application of HS-TENG based sensor in signal controlling, motion sensing, and 
energy harvesting. 
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believed that the selection of appropriate tribo-materials with opposite 
triboelectric polarities is crucial to achieving a high electrical output of 
TENGs [53–55]. For one thing, Ti3C2Tx with a highly electronegative 
surface due to abundant surface terminations (–F, –OH, and/or ––O) was 
selected as the negative tribo-material, which was used to coat on the 
surface of the AgNWs [21,56,57]. And Poly(3, 
4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) was 
added into the Ti3C2Tx layer to promote the interface adhesion strength 
between the conductive layer and the PET fibers. For another, Ecoflex 
silicone rubber was selected as the positive tribo-material, which tends 
to lose electrons in contact with other materials [58]. Fig. S4 shows a 
photograph of the electrostatic voltmeter and the experimental setup for 
measuring the initial and after-contact surface potentials. The results of 
Ecoflex and Ti3C2Tx after 20 cycles of contact-separation events are 
shown in Fig. S5. The sandwiched Ecoflex/AgNW-fabric/Ecoflex outer 
sheath was made by a strip of cotton elastic fabric with AgNW-coating as 
the electrode and covered by Ecoflex silicone rubber. To prepare the 
HS-TENG, the sandwiched outer sheath was helically wound around the 
core fiber (Fig. 1b). Based on the helical structure, the sensor exhibits 
excellent flexibility (Fig. 1c) and stretchability (up to 200 % tensile 
strain, Fig. 1d). In addition, this structure can be easily integrated, a 
twenty-meter length (not limited to this size) was fabricated shown in 
Fig. 1e. The rationale design of the core-sheath helical structure enabled 
the HS-TENG to transform various kinds of mechanical inputs into 
tribo-electrical signals. To further understand the spatial electric po
tential distribution of HS-TENG under various mechanical stimuli (e.g., 
bend, press, stretch, twist), we performed finite element analysis using 
COMSOL Multiphysics (Fig. 1f and Supplementary Note 1, Supporting 
information). The specific distribution of their electric potential is pre
sented in Fig. S6. Interestingly, the electric potential varies significantly 
with variable gap distances between the two triboelectric dielectrics 
(Ecoflex and Ti3C2Tx). These results suggest that our proposed HS-TENG 

is applicable to multiple mechanical energy harvesting with desirable 
flexibility. Finally, such HS-TENG can be easily integrated into func
tional electronic textiles (E-textiles) for versatile applications, including 
an insole for energy harvesting, a kneepad for sports sensing, and a glove 
for signal control in music player (Fig. 1g). 

Fig. 2a–c shows typical scanning electron microscopy (SEM) images 
of core fiber coated by AgNWs, Ti3C2Tx, and AgNWs/ Ti3C2Tx/ PEDOT: 
PSS respectively. AgNWs were coated tightly on the surface of core fiber 
to form a dense conductive network, as shown in Fig. 2a and Fig. S7a. 
This is because AgNWs with high aspect ratio have excellent flexibility, 
which makes them readily adsorbed on the surface of PET fibers [52]. As 
shown in Fig. 2b and Fig. S7b, Ti3C2Tx nanosheets also can adapt to the 
woven structure of the fiber and tightly wrap the fiber surface. While the 
TENG coated by pure 2D materials often suffer from low stability and 
stretchability, which may be related with the low aspect ratio of 2D 
materials [56]. Therefore, we combined 1D material and 2D material to 
promote electrical conductivity and reduce the generation of cracks, 
which considerably improved the comprehensive performance of the 
HS-TENG. As shown in Fig. 2c and d, with the addition of 2D material — 
Ti3C2Tx, a leaf-like conductive network structure formed. We used 
AgNWs as leaf veins and the Ti3C2Tx layer as leaf to wrap the surface of 
AgNWs to form a complete and continuous conductive path. To promote 
the interface adhesion strength between the conductive film and the PET 
fibers, we added PEDOT: PSS into the Ti3C2Tx layer. More specifically, 
the morphological structure and the element analysis (EDS) of core fiber 
with AgNW/ Ti3C2Tx/ PEDOT: PSS coating were shown in Fig. S8–9. 
Fig. 2e is the cross-sectional SEM image of the prepared sandwiched 
Ecoflex/AgNW-fabric/Ecoflex outer sheath. The thickness of the Ecoflex 
layer in contacted with the core fiber with AgNW/Ti3C2Tx/PEDOT: PSS 
coating is approximately 110 µm. Fig. 2f shows the surface morphology 
of the AgNW-based elastic fabric. As shown in Fig. 2h, AgNWs are on the 
surface of the braided-woven-structured fabric. The braided woven 

Fig. 2. Morphology and electromechanical characterization of HS-TENG. (a) SEM image of the core fiber coated by AgNWs. (b) SEM image of the core fiber coated by 
Ti3C2Tx. c, d) Low- and high-resolution SEM images of core fibers coated by AgNW/ Ti3C2Tx/ PEDOT: PSS. (e) Cross-section of the sandwiched Ecoflex/AgNW-fabric/ 
Ecoflex outer sheath. (f-g) Low- and high-resolution SEM images of the braided woven structure of AgNW-based elastic fabric. (h) AgNWs on the elastic fabric. (i) 
Stress-strain curves of the HS-TENG for continuous 10 cycles. (j) Relative resistance-strain curves of the sandwiched Ecoflex/AgNW-fabric/Ecoflex outer sheath and 
the core fiber coated by Ti3C2Tx, AgNW/Ti3C2Tx, and AgNW/Ti3C2Tx/PEDOT: PSS. (k) Durability testing of the core fiber coated by AgNW/Ti3C2Tx/PEDOT: PSS at a 
fixed strain of 50 %. (l) Durability testing of the sandwiched Ecoflex/AgNW-fabric/Ecoflex helical outer sheath at a fixed strain of 50 %. 
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structure of the cotton elastic fabric is beneficial to the adsorption of the 
AgNW dispersion and can reduce the damage to the conductive network 
under strain. The good elastic recovery of the HS-TENG is validated by 
the cyclic stretch-release tests at a fixed strain of 100 % for 10 cycles 
(Fig. 2i), which shows almost overlapped curves after the first cycle. As 
shown in Fig. 2j, by testing the relative resistance changes of core fibers 
coated by different components under strain, we compared the effects of 
the addition of AgNWs and PEDOT: PSS on the electromechanical 
properties of the Ti3C2Tx composite core fibers. The resistances of core 
fibers coated by Ti3C2Tx, AgNW /Ti3C2Tx, and AgNW/ Ti3C2Tx /PEDOT: 
PSS are about 800, 10, and 3 Ω/cm respectively. Fig. 2j shows the 
resistance of the core fiber with Ti3C2Tx coating increases rapidly under 
tensile strain. Due to the low initial conductivity, it will adversely affect 
the output performance of the HS-TENG. In contrast, combining Ti3C2Tx 
with PEDOT: PSS and AgNWs can not only improve the conductivity of 
the fiber but also enhance the interface bonding strength between the 
conductive materials and the scaffold fiber during the stretching pro
cess. Therefore, under stretch, the change of relative resistance of the 
core fiber with AgNW/Ti3C2Tx/PEDOT: PSS coating is slight. Finally, the 
durability of the core fiber coated by AgNW/Ti3C2Tx/PEDOT: PSS and 
sandwiched Ecoflex/AgNW-fabric/Ecoflex helical outer sheath was 
tested by 1500 cycles at a frequency of 1 Hz. Fig. 2k and l show just small 
fluctuations (increased by 1.5 and 0.15 respectively) in the resistance 
change of them during the 50 % stretching process, demonstrating the 
potential for long-term application. 

Fig. 3a is the schematic diagram of the working principle of the HS- 
TENG under pressing, based on the dual mechanism of contact electri
fication and electrostatic induction, operating in a contact-separation 
mode. When the HS-TENG is pressed to result in the contact of the 
core fiber and sheath layer, Ti3C2Tx layer and Ecoflex layer will be 
charged due to their different electron affinity. When the compression is 
released, electrons will flow from the inner electrode to the outer elec
trode to balance the generated triboelectric potential and will flow back 
to create a reverse current when the external force occurs again. An 
alternating current will be generated in the external circuit through the 
periodic contact-separation motion. It can be seen from the mechanism 
that the electronic performance of the HS-TENG is influenced by factors 
such as contact area, pressure, strain, and frequency. To characterize the 
energy-generating capacity of the HS-TENG, the open-circuit voltage 
(VOC), short-circuit current (ISC) and short-circuit charge transfer (QSC) 
are measured. We prepared a HS-TENG with a diameter of 3 mm and 
studied the influence of compression frequency, hybrid nanowire- 
nanosheet (AgNW-Ti3C2Tx) conductive network, and Ti3C2Tx tribo- 
layer on its electrical performance. The VOC, ISC and QSC generated by 
the HS-TENG under pressing increase with the increase of the 
compression frequency. When the compression frequency rises from 
1 Hz to 3 Hz, the VOC, ISC and QSC increase from 15 V, 0.55 μA, and 9 nC 
to 52 V, 1.5 μA, and 12.5 nC respectively, which is superior to most of 
reported works on fiber-based TENGs (Fig. 3b–c and Fig. S10–11). In 
Fig. S12, the VOC, ISC, and QSC of Ti3C2Tx/PEDOT: PSS-based HS-TENG 

Fig. 3. Energy generation mechanism and the electrical output performance under pressing mode. (a) Schematic illustration of the working principle of the HS- 
TENG. (b) VOC and (c) ISC of the HS-TENG under different frequencies (1–3 Hz). (d) The variation of VOC, ISC and (e) power density of the HS-TENG with 
different external load resistance. (f) Durability testing of HS-TENG for continuous 1000 cycles. (Inset: the corresponding real-time VOC). (g) Schematic illustration of 
a HS-TENG (length of 10 cm) integrated into an elastic textile. (h) the corresponding working circuit diagram (left) and lighting 165 red LEDs (right). (i) Charging 
curves of various capacitors by the HS-TENG (inset: the photograph of an electronic thermometer & hygrometer powered by the HS-TENG). 
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with a length of 2 cm under 3 Hz was 16 V, 0.4 μA, and 4.5 nC respec
tively, which was significantly lower than that of AgNW /Ti3C2Tx/ 
PEDOT: PSS-based HS-TENG. It shows that the hybrid AgNW-Ti3C2Tx 
percolation network not only help to promote the electromechanical 
property, but also is of benefit to energy generation performance of the 
HS-TENG. It may be due to that the dense conductive network formed by 
AgNW/Ti3C2Tx is more conducive to the charge transfer. Compared with 
AgNW /Ti3C2Tx/PEDOT: PSS-based HS-TENG, the AgNW /PEDOT: PSS- 
based HS-TENG has a relatively low electricity output (5.6 V, 90 nA, and 
1.4 nC 3 Hz) in Fig. S13, which shows the remarkable ability of Ti3C2Tx 
tribo-layer to attracts triboelectrically generated electrons due to elec
tronegative surface groups (Tx). The diameter of the core fiber can be 
selected as demand, and the output performance of the HS-TENG with a 
diameter of 1 mm is shown in the Fig. S14. The amplitude of the ISC 
increase is higher than the VOC and QSC. This is because the higher 
deformation rate leads to a higher flow rate of charges between two 
triboelectric layers, resulting in a higher current generation [35]. The 
power density is also measured by connecting different loads externally 
from 10 kΩ to 100 MΩ under the pressing frequency of 1 Hz. As dis
played in Fig. 3d, as the load resistance increased from 10 kΩ to 
100 MΩ, the VOC increased while the ISC decreased. The maximum 
output power density is 4.2 µW at a load resistance of 50 MΩ (Fig. 3e). 
The durability of the HS-TENG was also measured at a frequency of 
1 Hz. As shown in Fig. 3f, the VOC remains almost a constant of 4 V after 
1000 contact-separation cycles, indicating excellent mechanical 
robustness and reliability. As shown in Fig. S15a, after 20 days of stor
age, the resistance of the electrode increased from 2.6 Ω/cm to 
3.4 Ω/cm. Due to the high internal impedance of the TENG, the increase 
in the resistance of AgNW/ Ti3C2Tx /PEDOT: PSS is acceptable, which 
has a negligible negative impact on the performance of the TENG [59]. 
As shown in Fig. S15b–d, the output performance of HS-TENG decreased 
by 30 % (from 13 V, 0.5 μA, 9 nC to 10 V, 0.35 μA, 6.5 nC). This may be 
due to the oxidation of surface terminations (–OH) of the Ti3C2Tx [60], 
which adversely affects the electrical output performance of the 
HS-TENG. Moreover, machine washability is also a basic requirement 

for textiles in their actual application. The Fig. S16 demonstrates the 
washing environment and washing durability tests of our HS-TENG. The 
electrical output of the HS-TENG shows no significant degradation after 
10 times washing (detailed information about washing condition and 
process in Supplementary Note 2, Supporting information). 

To efficiently drive commercial electronics, we fabricated a HS- 
TENG with the length of 10 centimeters (Fig. 3g). Our HS-TENG can 
perform as a sustainable power source owing to its high electrical out
puts (160 V, 8 μA, 45 nC Fig. S17). The Fig. 3h (left) demonstrates the 
corresponding circuit diagram of a self-powered system including the 
HS-TENG as a power source, a capacitor as an energy storage unit, and a 
rectifier (2W04, ASEMI) as an alternating current-to-direct current 
converter. Fig. 3h(right) shows HS-TENG can directly light up 165 red 
LEDs (Movie S1 in Supporting information). The charging curves of 
capacitors (1, 2.2, 3.3, 4.7, and 10 µF) by the HS-TENG are presented in 
Fig. 3i. The capacitor of 1, 2.2, and 3.3 µF can be rapidly charged to 3 V 
within 10, 40, and 55 s respectively. The illustration shows that the self- 
powered system integrated with HS-TENG and 10 µF capacitor can drive 
an electrical thermometer & hygrometer. The results show our HS-TENG 
is very promising as an efficient and clean power source. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2022.107588. 

In addition to the compression, mechanical energy harvesting 
capability of the HS-TENG was also tested under bending, twisting, and 
stretching to investigate diverse working conditions. Fig. 4a–d illustrates 
the sensor under mechanical stimuli of bend, twist, stretch, and press. As 
shown in Fig. 4e, the VOC increases distinctly from 0.35 V to 1.75 V 
when the extent of bending deflection changes from 0.5 cm to 2.0 cm. 
Similarly, when our HS-TENG is twisted from 30◦ to 270◦, the VOC in
creases from 0.15 V to 0.75 V (Fig. 4f). Moreover, when the stretch 
strain raises from 30 % to 120 %, the HS-TENG reveals an obvious 
enhancement in VOC from 0.15 V to 1.2 V (Fig. 4g). The structure of the 
HS-TENG can provide adequate contact-separation operation space. The 
gap size between the inner core and the outer sheath will decrease 
gradually under diverse mechanical stimuli, thus contributing to 

Fig. 4. Versatile mechano-electrical conversion of the HS-TENG. (a-d）Illustrations of the HS-TENG device under different mechanical stimuli. (e-h) Cyclic testing of 
HS-TENG for bending, twisting, stretching, and pressing. (i-l) The VOC of the HS-TENG under mechanical input of bending (deflection of 0–2 cm), twisting (angle of 
0–270◦), stretching (a strain of 0–120 %) and pressing (force of 0–10 N). 
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obvious output signal. The VOC of the HS-TENG under the compressing is 
much higher than those under other mechanical stimuli because the 
compressing operation may result in a much higher extent of gap size 
shrinkage. Another reason is that in pressing mode, the contact area 
between the inner core and outer sheath will be larger, and the tight 
squeeze is more conducive to contact electrification and electrons 
transfer Energy conversion under diverse deformations not only endow 
our HS-TENG with efficient mechanical energy harvesting ability, but 
also help to achieve sensing of various kinds of motions. 

With high sensitivity response to a variety of mechanical stimuli, 
lightweight, flexibility, and stretchability, the HS-TENG is particularly 
suitable for energy harvesting, motion monitoring, and signal control 
(Fig. 5a). Collecting mechanical energy from runners enables the HS- 
TENG to be used as a self-powered lighting device during night 

running. The self-powered night-running light system consists of four 
main functional units: the HS-TENG (length of 80 cm) integrated into 
the insole, a full-wave diode bridge that rectifies the power output 
generated by the sensor, a 10 µF capacitor that can temporarily store the 
power output, and a commercial LED. First, the HS-TENG collects 
biomechanical energy from human motion and converts it into electrical 
energy. Then, the power output can directly illuminate the commercial 
LED, thereby acting as a safety warning during night-running (Movie S2 
in Supporting information). Fig. 5b demonstrates the equivalent circuit 
(left) and the image (right) of a runner equipped with HS-TENG based 
self-powered night-running warning system. In terms of motion sensing, 
most human motions are related to joint bending and are accompanied 
by changes in the strain of the surrounding skin [61,62]. Through the 
stretch/bend sensing modes of the HS-TENG, the related motion of joint 

Fig. 5. HS-TENG enabled smart E-textiles for energy generation, sensing, and signal control. (a) Schematic illustration of the HS-TENG as wearable sensor integrated 
into various textiles, including insole for energy harvesting, kneepad for motion sensing, and glove for signal control. (b) The corresponding circuit diagram (left) and 
the image (right) of a runner equipped with HS-TENG based self-powered night-running warning system. (c) Voltage signals of the HS-TENG in response to walking, 
knee flexing/extending, running, and jumping. (d) Morse codes generated via pressing the HS-TENG, representing a phrase of “SICCAS”. (e) Circuit diagram for signal 
control of music app on mobile phone. 
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bending can be effectively captured. As shown in Fig. 5c, the HS-TENG 
(sewn to the kneepad) records the electrical signals. It can discriminate 
various motions including knee flexing/extending, walking, running, 
and jumping, according to their distinctly differentiated waveforms. In 
addition to the strenuous knee-related exercise, some relatively gentle 
motions including finger bending, are also significant biomechanical 
information for healthcare or human-machine interaction applications. 
As shown in Fig. S18, the HS-TENG is attached on the index finger to 
achieve real-time voltage responses to finger bending. The outputs in
crease as the bending angles of the finger increase, which is attributed to 
the increasing effective contact area between the Ti3C2Tx tribo-layer and 
Ecoflex. In addition, The HS-TENG also can be sewn on the palm of the 
glove (top of Fig. 5a). The voltage signals generated through long press 
and short press can be identified as “dash” or “dot” signals in sequences 
of Morse codes. Fig. 5d shows a series of VOC signals created by pressing, 
representing a phrase of “SICCAS”, achieving the conversion from 
pressing to useful information. Here, we further demonstrate the 
HS-TENG to serve as the wireless signal controller of the music app on 
mobile phone. Circuit diagram can be found in Fig. 5e, where the mi
crocontroller unit (MCU) with the related circuit and Bluetooth module 
is used to process the signals. More specifically, a HS-TENG based haptic 
sensor generates an original press signal by pressing and rising trigger 
signals after rectification and smoothing. And then, different signal 
types are converted into different passwords by the MCU to trigger 
different commands, which are transmitted to the mobile phone through 
the Bluetooth module to realize the signal control of the music app 
(detailed information in Supplementary Note 3, Supporting informa
tion). Short press (That corresponds to a dot) controls “Play” or “Pause”, 
double short press (That corresponds to two dots) controls “Next”, and 
long press (That corresponds to a dash) controls “Previous” (Movie S3 in 
Supporting information). Due to the advantages of flexibility and easy 
integration, the smart glove has potential application prospects as a 
wearable tactile control system in many fields such as soft robots, 
automatic control, and smart home [63–65]. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2022.107588. 

3. Conclusion 

In summary, a flexible and versatile helical-structured triboelectric 
nanogenerator (HS-TENG) is devised. The HS-TENG with high stretch
ability (~ 200 %) can produce high electrical outputs (52 V, 1.5 µA, 
4.2 μW under 3 Hz, 2 cm long device), and can respond to multiple 
forms of mechanical stimuli (stretch, press, twist, bend) simultaneously. 
Furthermore, HS-TENG can be easily integrated into functional E-tex
tiles for versatile applications, including energy harvesting, motion 
sensing, and wireless signal control. Our HS-TENG and the E-textiles 
could greatly promote the development of fiber electronics. 

4. Experimental section 

4.1. Materials 

AgNWs(10 mg/mL, Zhejiang Kechuang New Materials Co., Ltd.), 
PEDOT: PSS (1 wt%, Xi’an Baolight Optoelectronics Technology Co., 
Ltd.), Ecoflex (Smooth-On, Inc., A and B components in the weight ratio 
of 1:1), HCl and LiF were purchased from Tansoole. PU fiber and copper 
wire were purchased from a local supermarket. 

4.2. Preparation of Ti3C2Tx /PEDOT: PSS and AgNW inks 

2 g LiF powder was slowly immersed into 23 mL 9 M HCl to prepare 
the etchant. During the etching process, Ti3AlC2 (1 g) powder was 
treated with the etchant under continuous stirring for 48 h at 60 ℃. The 
resulting mixture was washed with distilled water and centrifuged until 
the pH was above 6. The precipitates were then collected by vacuum 

filtration and dried by vacuum freeze dryer, to obtain multilayer Ti3C2Tx 
powder. Afterward, 1 g sediment was added into 50 mL distilled water, 
which was followed by 1 h sonication and 1 h centrifugation at 
3500 rpm. The supernatant containing delaminated Ti3C2Tx was ach
ieved in the final step. Alternatively, we added PEDOT: PSS to the 
Ti3C2Tx dispersion. The Ti3C2Tx dispersion and PEDOT: PSS were mixed 
2:1 by weight. Then the mixture was continually stirred for 12 h to get 
homogeneous Ti3C2Tx /PEDOT: PSS ink. AgNWs were dispersed in iso
propanol/water mixed solvent by bath sonication. Polyvinyl pyrrolidone 
(PVP) was added to facilitate the dispersion of AgNWs. The concentra
tion of the AgNW ink is 10 mg/mL. 

4.3. Fabrication of core fiber with AgNW/ Ti3C2Tx/ PEDOT: PSS coating 

The PU/PET elastic fibers (≈ 600 µm, 3 mm in diameter) are 
commercially available. Firstly, the fibers were cleaned in ethanol with 
ultrasonic treatment for about 10 min and dried in air. Then the fibers 
were dip-coated in AgNW dispersion (10 mg/mL) for 5 s and immedi
ately dried using a blow dryer. After this process was repeated several 
times, the AgNW-based fibers were dried at 80 ℃ in an oven for 20 min. 
The AgNW-based fiber was dip-coated in Ti3C2Tx /PEDOT: PSS disper
sion for specific times (5 s for each dip-coating) and dried in air. One end 
(defined as the electrode end of the fiber) was connected to a copper 
wire with the aid of silver paste for external circuit connection. 

4.4. Fabrication of the sandwiched Ecoflex/AgNW-fabric/Ecoflex outer 
sheath 

The commercial cotton elastic fabric was cut into ribbons as sub
strates. Firstly, the fabric was cleaned in ethanol with ultrasonic treat
ment for about 10 min and dried in air. Then the fabric was dip-coated in 
AgNW dispersion (10 mg/mL) for 5 s and immediately dried using a 
blow dryer. After this process was repeated several times, the AgNW- 
based fabric was dried at 80 ℃ in an oven for 20 min. The AgNW- 
based fabric was dipped into a liquid Ecoflex precursor from a 1A:1B 
mixture by weight leaving one end naked and then cured in an oven 
(80 ℃, 10 min). The end (defined as the electrode end of the fabric) was 
connected to a copper wire with the aid of silver paste for external cir
cuit connection. 

4.5. Assembly of the HS-TENG 

The sandwiched Ecoflex/AgNW-fabric/Ecoflex outer sheath was 
helically wound around the core fiber to form a helically structured 
device. The helical turns and leaving gaps can be adjusted, copper wire 
as electrode lead is connected to both ends by conductive silver paint. 
The two ends of the device were fixed by the room temperature vulca
nized silicone rubber. 

4.6. Characterization and measurement 

Hitachi SU4800 FE-SEM was used for scanning electron microscope 
(SEM) characterization. In the electromechanical performance test, the 
strain loading was carried out by a high-precision electric translation 
platform (Shanghai Weimu Optoelectronic Instrument Co., LTD., 
ZXT300MA06), and the real-time current signal was recorded by an 
electrochemical workstation (PARSTAT2273, Princeton Applied 
Research). In power generation performance tests, Linmot linear motors 
(E1100) are used to apply high-frequency stresses. Open circuit voltage, 
short circuit current, and transfer charge data were collected using a 
Keithley 6514 electrometer with a high-speed acquisition card. Con
cerning TENG simulation, COMSOL Multiphysics was used. In experi
ments involving human movement tests, individuals are thought to be 
electrically grounded. All electrical measurements were made at a 
relative humidity of 45 % and a temperature of 23 ℃. The surface po
tential of the tribo-materials were recorded using an electrostatic 
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voltmeter (Terk 542A). 
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