
Contents lists available at ScienceDirect

Journal of Photochemistry & Photobiology A: Chemistry

journal homepage: www.elsevier.com/locate/jphotochem

A novel ternary Mica/TiO2/Fe2O3 composite pearlescent pigment for the
photocatalytic degradation of acetaldehyde

Xiangming Fanga,b, Guanhong Lua, Asad Mahmooda, Zhihong Tangb, Ziwei Liua, Linlin Zhanga,
Yan Wanga,*, Jing Suna,*
a State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences, 1295 Dingxi Road,
Shanghai, China
bUniversity of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China

A R T I C L E I N F O

Keywords:
Photocatalytic composite pearlescent pigment
Mica-titania pigment
Gaseous acetaldehyde
Fe2O3

A B S T R A C T

A novel ternary mica/TiO2/Fe2O3 composite pearlescent pigment has been designed for the photocatalytic
oxidation of gas-phase acetaldehyde in the application of indoor air purification. The mica/TiO2/Fe2O3-x (MTF-
x, x = mFe2O3 : mTiO2 = 0.5–2: 100) composites were synthesized by a sol-gel assisted hydrothermal method.
The MTF-1.5 composite shows optimal photocatalytic performance, which is 1.8 times photodegradation effi-
ciency and 2.2 times CO2 mineralization efficiency higher than those of pure TiO2. The enhanced photocatalytic
performance of MTF-x (x = 0.5–2) composites could be associated with enhanced reflectivity of mica, which
eventually improved the light absorption properties. Also, the presence of TiO2/Fe2O3 heterostructure facilitated
charge separation in the MTF ternary composite. Besides, superoxide radical was proven as the decisive active
species for the degradation of gaseous acetaldehyde. This work provides a systematic approach to develop a
potential multi-functional pearlescent pigment to purify indoor air.

1. Introduction

Volatile organic compounds (VOCs) are regarded as the primary
source of indoor air pollution [1–3]. The VOCs i.e., acetaldehyde, is
released by the building materials, which can cause throat irritation,
shortness of breath, eye irritation, and chest tightness [4–6]. Therefore,
many air pollutants removal technologies have been developed [7–9].
The photocatalytic oxidation is regarded as a promising way for indoor
air purification [10,11]. However, the degradation and CO2 miner-
alization efficiency of semiconductor photocatalyst, such as TiO2, have
been limited by its poor light harvesting and fast recombination of the
photoinduced hole-electron pairs [12]. The constructing of hetero-
junction with cocatalysts is an effective way to overcome these issues,
such as TiO2/ZnO and TiO2/Fe2O3 [13,14].

Fe2O3 is a good cocatalyst due to its availability, chemical stability,
and low bandgap energy (2.2 eV), which has been proved to enhance
the visible light performance of TiO2 [15–18]. Lin et al. [19] synthe-
sized heterostructured TiO2@α-Fe2O3 core–shell nanoparticles, which
had good photocatalytic dyes degradation performance. The band
matching of TiO2 and Fe2O3 promotes the migration and separation of
photogenerated electron and hole pairs, thereby improving the photo-
catalytic activity. Banisharif et al. [20] synthesized Fe2O3-doped TiO2

photocatalyst by ultrasonic-assisted co-precipitation method and stu-
died the photocatalytic performance for the photodegradation of tri-
chloroethylene in the air. Zhao et al. [21] prepared a TiO2/Fe2O3 na-
nocomposite film by a chemical bath deposition method. The TiO2

modified by Fe2O3 show higher photopotential and photocurrent values
than those of unmodified TiO2. The optimal Fe3+ is beneficial to reduce
the recombination of photogenerated electrons and holes, also the one-
dimensional nanostructure can enhance the transfer and transport of
charge carriers. Moniz et al. [22] synthesized novel Fe2O3–TiO2 nano-
composite by photo-deposition method. Compared with P25, the com-
posite shows better photocatalytic activity for the complete miner-
alization of the toxic 2,4-D herbicide. The heterojunction of Fe2O3–TiO2

is confirmed to enhance the separation of photogenerated charge car-
riers. These results suggest that the construction of TiO2/Fe2O3 het-
erojunction can obviously improve the photocatalytic activity. In ad-
dition, the reflection effect has proved to be a promising method to
increase light harvesting [23]. Mica, a stoichiometric formula KA-
l2(AlSi3O10)(OH)2, has high reflectivity, which is a good potential co-
catalyst.

In view of the relationship between structure fabrication and pho-
tocatalytic activity of photocatalyst, we develop a mica/TiO2/Fe2O3

photocatalytic composite pearlescent pigment (MTF) to photodegrade
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flowing gaseous acetaldehyde. The ternary composite is anticipated to
improve the light harvesting, charge separation, and photodegradation
efficiency. A sol-gel assisted hydrothermal method was used to syn-
thesize MTF composite pearlescent pigments. In contrast to pure TiO2,
MTF demonstrate the obviously increased photodegradation of gaseous
acetaldehyde efficiency and CO2 mineralization activity. The optical
characterizations i.e., UV-Vis, PL, and photocurrent studies suggest a
synergistic effect in the ternary composite frameworks. The color
property of MTF was characterized by the International Commission on
Illumination (CIE) 1976 L*a*b* colorimetry. This work provides a facile
approach to develop stable and efficient ternary photocatalytic com-
posite pearlescent pigment, which can be exploited to develop a po-
tential functional pigment for indoor air purification.

2. Experimental

2.1. Materials and reagents

The mica was purchased from Hangzhou Forward Fine Chemicals
Co., Ltd, China. The acetaldehyde gas was purchased from Shanghai
Weichuang Standard Gas Analytical Technology Co., Ltd. Tetrabutyl
titanate and ferric chloride were purchased from Aladdin Industrial
Corporation. All other chemicals and solvents were purchased from
Shanghai Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) and
used without further purification.

2.2. Synthesis

A sol-gel assisted hydrothermal method was used to prepare MTF
photocatalytic composite pearlescent pigments. In a typical procedure,

absolute ethanol (20 mL), tetrabutyl titanate (5 mL), and mica (3.9 g)
were mixed by continuous stirring at room temperature (designated as
solution A). Similarly, absolute ethanol (19 mL), concentrated nitric
acid (0.1 mL), anhydrous ferric chloride (36 mg) and deionized water
(1 mL) were mixed to form a solution (B). The solution B was slowly
dropped into solution A, which were stirring to form a gel. The as-
prepared gel was dried and homogenously dispersed in 70 mL deionized
water by sonication. The suspension was then transferred into a Teflon-
lined autoclave (100 mL) and maintained at 180 °C for 6 h. The final
product was collected by centrifugation (6000 rpm) and washed three
times with absolute ethanol and distilled water, which was named as
MTF-1.5 (mFe2O3: mTiO2 = 1.5: 100 = 1.5 wt%). For comparison, the
different mass amounts of FeCl3, such as 12 mg, 24 mg, 36 mg, 48 mg,
were added to solution B to prepare MTF-x (mFe2O3: mTiO2: mmica =
0.5–2: 100: 300) composites. Pure Fe2O3 was prepared as the same
procedure without mica and tetrabutyl titanate. The mica-titania (MT)
pearlescent pigment was prepared as the same procedure without
FeCl3.

2.3. Characterization

The phase development was studied using X-ray diffraction (XRD,
BRUKER AXS GMBH, German) with a Cu Kα radiation source (λ =
0.154 nm). The surface, cross-sectional morphology and element
mapping scan of composites were characterized by a Field Emission
Scanning Electron Microscope (Magellan 400 FEI) at 10 kV operating
voltage. The Brunauer–Emmett–Teller specific surface area (SBET) were
investigated by a Micromeritics ASAP 3000 nitrogen adsorption appa-
ratus. All the composites were degassed at 300 °C for 12 h and then
subjected to nitrogen adsorption measurements. Raman spectra were
collected by DXR Raman Microscope (Thermo Fisher Scientific) using
an excitation wavelength of 532 nm laser at 7 mW laser power. X-ray
photoelectron spectroscopy (XPS) were carried out by a Microlab 310 F
Scanning Auger Microprobe (VG SCIENTIFIC Ltd). The Perkin–Elmer
Lambda 950 spectrometer was applied to record UV–Vis spectra of the
samples ranging from 300 to 600 nm. The photoluminescence spectra
(PL, Perkin–Elmer Luminescence spectrometer 55) of all the samples
were acquired with an exciting wavelength of 320 nm. Electron spin
resonance (ESR) signals of active radicals were recorded on a JES-
FA200 spectrometer and trapped by 5,5-dimethyl-1-pyrroline N-oxide
(DOJINDO Lab:> 99%) (DMPO). The photocurrent studies were car-
ried out by a CHI660D electrochemical workstation using a conven-
tional three-electrode cell configuration, which includes as a Pt counter
electrode, Ag/AgCl as a reference electrode, and FTO coated with
samples as a working electrode. The colorimetric values were evaluated
in terms of the Commission Internationale de l’Eclairage (CIE) 1976
L*a*b* colorimetric method by a Color-Eye automatic differential col-
orimeter (XTS).

Fig. 1. (a, b) XRD patterns of pure TiO2, Fe2O3, MT and MTF-x (x = 0.5–2) composites.

Fig. 2. Raman spectra of TiO2, MT and MTF-x (x = 0.5–2) composites.

X. Fang, et al. Journal of Photochemistry & Photobiology A: Chemistry 400 (2020) 112617

2



2.4. Evaluation of photocatalytic activity

The photodegradation of acetaldehyde was carried out in an auto-
mated real-time gas-flow system coupled with a gas chromatograph
(GC-7920). A 120 mL cuboid quartz vessel was used as the reaction
chamber, which can be directly illuminated by the light source (400 W
xenon lamp). The concentration change of gas acetaldehyde was re-
corded every 10 min. 0.1 g MTF-x (x = 0.5–2) composites for the
photocatalytic reaction was dispersed in 2 mL ethanol, which were
uniformly coated and dried on a glass plate (15 cm × 7.5 cm ×3 mm).
The gas acetaldehyde was diluted one time by compressed air to sta-
bilize the concentration at 500 ppm at 8 sccm flow rate. Initially, the
adsorption-desorption equilibrium was achieved in the dark. Then, the
samples were irradiated and the gas acetaldehyde concentration was
monitored. The removal rate (η) of acetaldehyde was calculated by
equation:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

×C
C

η 1 100%
0

Where C0 is the initial concentration, and C is the acetaldehyde con-
centration at different times under irradiation. The yield of CO2 was
calculated by equation:

= −Y CO CO
C H O

( ) ( )
2( )CO

out in

in

2 2

2 4
2

Where (CO2) in and (CO2) out, (C2H4O) in denoted the inlet and outlet
concentrations of CO2 and C2H4O, respectively.

3. Results and discussion

3.1. Phase structure and morphology

Fig. 1 shows the XRD analysis of pure TiO2, Fe2O3, MT, and MTF-x

Fig. 3. SEM images of (a) pure TiO2 and (b–c) MTF-1.5 composite, (d) cross-section SEM image of MTF-1.5 composite; EDS elemental mapping profiles of MTF-1.5
composite: (e) Ti-Fe overplay; (f) Ti atoms (purple); (g) Fe atoms (gold).

Fig. 4. (a, b) HRTEM images of MTF-1.5 composite.
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(x = 0.5–2) composites. The characteristic peaks for potassium mica
are observed at 2θ = 17.62°, 26.55°, 35.65°, and 45.03°, while the peak
at 25.30° corresponds to anatase TiO2. The diffraction peak at 2θ =
33.15° is attributed to (104) crystal plane of α-Fe2O3, whose intensity
increases with the successive increasing of Fe2O3 contain in the MTF-x
(x = 0.5–2) composites [24]. These results indicated that Fe2O3 was
successfully introduced to MT.

The characteristic Raman modes of TiO2 were observed at 144, 197,
399, 519, and 639 cm−1 as shown in Fig. 2, which correspond to Eg(1),

B1g(1), A1g + B1g(2), and Eg(2) of anatase TiO2 and consistent with its
XRD results.

The FESEM and EDS results of MTF-1.5 composite are illustrated in
Fig. 3. The surface micrographs of pure TiO2 indicated their average
particle size below 30 nm in Fig. 3a. As shown in Fig. 3b and c, the
MTF-1.5 composite demonstrated an irregular flat morphology with
dozens of micron particle size and uniformly covered by nanoparticles.
The cross-section morphology of MTF-1.5 composite is presented in
Fig. 3d, whose inner layer is mica with about 300 nm thickness. And the
outer layer of MTF-1.5 is uniform and its thickness is 54± 3 nm. To
further confirm the presence of TiO2/Fe2O3 heterojunction, the element
mapping profile of MTF-1.5 composite has been tested. As shown in
Fig. 3e–g, Ti and Fe atoms are uniformly distributed on the surface of
mica. And the content of Fe atom is lower than that of Ti atom.

The HRTEM images were used to reveal the TiO2/Fe2O3 hetero-
junction of MTF-1.5 composite (Fig. 4). As shown in Fig. 4b, the d-
spacing is 0.35 nm corresponding to the (1 0 1) plane of cubic TiO2 and
the spacing is 0.25 nm belonging to the (1 1 0) plane of Fe2O3.
Therefore, TiO2/Fe2O3 with heterostructure uniformly coat on the
surface of mica.

The XPS study was used to analyze the chemical composition and
elemental chemical state of the MTF-1.5 composite (Fig. 5). The full
range survey XPS spectrum of MT and MTF-1.5 composite are presented
in Fig. 5a. The presence of Fe element in MTF-1.5 composite has been

Fig. 5. XPS spectra of MT and MTF-1.5 composite: (a) survey spectrum, (b) Fe 2p, (c) O 1s and (d) Ti 2p.

Table 1
The color coordinates of MT and MTF-x (x = 0.5–2) composite pearlescent
pigments.

Samples Color coordinates

L* a* b* ΔE*

MT 57.82 −0.71 −0.74 –
MTF-0.5 59.74 1.29 4.12 5.56
MTF-1 58.64 1.28 4.24 5.42
MTF-1.5 59.32 1.37 4.46 5.80
MTF-2 60.37 1.65 4.72 5.46

△ = △ + △ + △L a bE ( ) ( ) ( )* * 2 * 2 * 2 , where ΔL∗, Δa∗ and Δb∗ are the changes
of L∗, a∗, and b∗ respectively.

Fig. 6. The optical images of (a) MT, (b) MTF-0.5, (c) MTF-1,
(d) MTF-1.5, (e) MTF-2 composites.
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Fig. 7. (a, b) Photocatalytic degradation of flowing gaseous acetaldehyde (500 ppm, 8 sccm) under 400 W Xenon lamp irradiation; (c) Time profiles of CO2

concentration of the composites; (d) Cyclic experiments with MTF-1.5 composite.

Fig. 8. (a) UV–Vis absorption spectra of pure TiO2, MT and MTF-x (x = 0.5–2) composites; (b) The graph of the converted Kubelka–Munk function of light energy; (c)
The XPS valence band spectra of TiO2 and Fe2O3.
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proved. In the case of Fe 2p (Fig. 5b), two peaks at 708.93 and 726.01
eV were fitted, which is attributed to Fe 2p3/2 and Fe 2p1/2, respec-
tively. The energy difference between Fe 2p3/2 and Fe 2p1/2 is 17.09
eV, indicating the presence of a-Fe2O3 in MTF-1.5 composite [25]. For
O 1s (Fig. 5c), the two peaks at 530 and 531.69 eV are attributed to Ti-
O and O-H in MTF-1.5 composite. However, the binding energy of O–H
bond in MTF-1.5 composite is higher than that of TiO2, which may
provide an indirect evidence for the formation of the Ti–O–Fe bond
[26]. As shown in Fig. 5d, the typical peaks of Ti 2p1/2 and Ti 2p3/2 in
MT appeared at 464.4 eV and 458.8 eV. These binding energy peaks of
MTF-1.5 composite were detected at 464.6 eV and 458.8 eV. The en-
ergy difference of Ti 2p1/2 and Ti 2p3/2 peaks in MT and MTF-1.5
composite were 5.6 eV and 5.8 eV, respectively. It is concluded that the
energy difference of Ti 2p increase due to the formation of Ti–O–Fe
bond in MTF-1.5 composite [27].

The MT pearlescent pigment is composed of TiO2 deposited on mica
sheets, which also shows good optical properties. CIE colorimetric
analysis was used to characterize the optical properties of the compo-
sites. As can be seen from the data listed in Table 1, MTF-x (x = 0.5–2)
composite pearlescent pigments show light red color effect
(1.29< a*<1.65, 4.12< b*<4.42). Compared with MT pigment,
the L* (brightness) of the MTF-x (x = 0.5-–2) composite pearlescent

pigments slightly increase, and ΔE* also increases with the increasing
concentration of Fe2O3. It is worth noting that the higher L* value of
MTF-x (x = 0.5–2) composite pearlescent pigments maybe imply su-
perior light harvesting to enhance its photocatalytic performance
(Fig. 6).

3.2. Photocatalytic activity measurement

The photocatalytic performance of pure TiO2, MT and MTF-x (x =
0.5–2) composites are shown in Fig. 7. The photodegradation efficiency
of pure TiO2 is 45% (Fig. 7a) and 250 ppm of CO2 were released at the
same time (Fig. 7c). According to the equation ( = −YCO

CO CO
C H O

( ) ( )
2( )

out in
in2

2 2
2 4

),
the CO2 mineralization efficiency of pure TiO2 is 25%. The photo-
degradation efficiency of MT increase to 57% and CO2 mineralization
efficiency is 33% (red line). The MTF-1.5 composite (purple line) has
the highest photodegradation efficiency (80%), which is 1.8 times
higher than that of pure TiO2 and 1.4 times higher than that of MT. And
its CO2 mineralization efficiency (55%) is 2.2 times higher than that of
pure TiO2 and 1.8 times higher than that of MT. Thus, it can be inferred
that the photocatalytic performance of MT can be significantly en-
hanced by TiO2/Fe2O3 heterojunction. A cyclic test of MTF-1.5 com-
posite is further used to study the stability for practical device appli-
cations (Fig. 7d). The test was performed in two weeks in successive
five cycles. The results show that the MTF-1.5 composite can maintain
high photocatalytic stability after the fifth cycle, ensuring its long-term
use.

3.3. Mechanism studies of photocatalytic degradation

3.3.1. Optical properties
The optical properties of pure TiO2, MT and MTF-x (x = 0.5–2)

composites were investigated by UV–Vis spectroscopy (Fig. 8). As
shown in Fig. 8a, the absorbance of MT is higher than that of pure TiO2

ranging from 300 to 600 nm due to the reflection of mica core. Besides,
the absorbance of MTF-x (x = 0.5–2) composite increase with the in-
creasing content of Fe2O3. Compared with MT, the absorption band
edges of MTF-x (x = 0.5–2) composites demonstrate a red-shift, which
extends light absorption in the visible region. This behavior can be
associated with the narrow energy band of Fe2O3 and enhanced optical
scattering in the ternary composite structures [28]. The bandgap energy
of composite was calculated using equation of

= −A(αhν) (hν E )n
g

1/

where α is the absorption coefficient, A is the parameter that is related
to the effective mass associated with the valence and conduction bands,
hν is the absorbed energy and Eg is the bandgap energy (Fig. 8b). The
value of the index indicates the nature of the electronic transition, ei-
ther directly or indirectly: the value of n is 0.5 for direct and 2 for

Table 2
The specific surface area of the as-prepared samples calculated by BET method.

Sample TiO2 MT MTF-0.5 MTF-1 MTF-1.5 MTF-2

SBET (m2/g) 81.3 47.1 41.6 44.9 43.7 43.6

Fig. 9. TPD spectra of acetaldehyde of pure TiO2, mica, MT and MTF-1.5
composite.

Fig. 10. (a) PL spectra and (b) Photo-current response of MT and MTF-x (x = 0.5–2) composites.
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indirect bandgap materials [29]. The Eg value of MT (3.1 eV) is lower
than that of TiO2 (3.2 eV), which is due to the inter-band electronic
transitions from TiO2 to mica [30]. The Eg value of MTF-1.5 composite
is 3.0 eV. The XPS valence band spectra of TiO2 and Fe2O3 have been
presented in Fig. 8c. The valence band (VB) of a TiO2 is 2.91 eV and the
conductive band (CB) is−0.29 eV. While VB of Fe2O3 is 2.48 eV and CB
is 0.24 eV, respectively.

3.3.2. The pollutant adsorption
The corresponding specific surface area (SBET) of composites were

employed to estimate the relationship between the adsorption ability of
gas and photocatalytic performance. The bigger specific surface area
(SBET) value correspond to the larger number of adsorbed gas molecules
of composites [31]. As shown in Table 2, the SBET value of MTF-x (x =

0.5–2) composites ranging from 41.6 to 44.9 m2/g are smaller than
those of pure TiO2 (81.3 m2/g) and MT (47.1 m2/g). It could be as-
sumed that the introducing of micro flake mica and Fe2O3 is negative
for increasing pollutant adsorption. The temperature programmed
desorption (TPD) results of pure TiO2, mica, MT and MTF-1.5 compo-
site are shown in Fig. 9. The peak located at 100−200 °C is related to
weak binding for physical absorption of acetaldehyde and the peak
located at 300−500 °C is ascribed to strong chemical adsorption. The
higher TPD intensity represented stronger adsorptive capacity. As pre-
sented in Fig. 9, the order of gas acetaldehyde physical adsorption is
TiO2 ＞ MTF-1.5 ≈ MT ＞ mica. While, the order of chemical adsorp-
tion is TiO2 ≈ MTF-1.5 ＞ MT ＞ mica. And the quantity of chemically
adsorbed acetaldehyde of the four samples are all stronger than that of
physically adsorbed. In contrast to pure TiO2, the desorption tempera-
ture of MT and MTF-1.5 composite both increase from 350 °C to 450 °C,
which indicate the enhancing of chemical absorbability by introducing
mica and Fe2O3. Hence, the chemical absorbability of photocatalyst
could ultimately enhance the photocatalytic activity [32].

3.3.3. Photogenerated electron hole separation
The PL spectroscopy was used to investigate the separation effi-

ciency of charge carriers in semiconductor [33,34]. The lower PL in-
tensity represents less recombination. The emission intensity of MTF-x
(x = 0.5–2) composites are much lower than that of pure TiO2

(Fig. 10a), which indicates that the TiO2/Fe2O3 heterojunction effec-
tively inhibits the recombination of photogenerated charge carriers.
The photocurrent test was used to characterize the generation and se-
paration of photogenerated electron-hole pairs (Fig. 10b). Compared to
MT, MTF-x (x = 0.5–2) composites exhibit higher photocurrent den-
sity, which means that more photoinduced e− and h+ pairs generation
and separation were in MTF-x (x = 0.5–2) composites. It is positive for
the increasing of photocatalytic performance [35].

3.3.4. The role of radicals
The electron spin resonance (ESR) test was employed to study the

Fig. 11. (a) ·O2– and (b)·OH detection of pure TiO2, MT and MTF-x (x = 0.5–2) composites.

Fig. 12. Scavenger experiments using PBQ and TEMO as corresponding ·O2
−

and ∙OH quenching.

Fig. 13. Schematic diagram of the ternary structure of MTF composite.
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role of superoxide radicals (∙O2
−) and hydroxide (∙OH) in Fig. 11 [36].

The stronger intensity of radicals presents more radical produced. The
intensity order of ∙O2

− and ∙OH are both MTF-1.5＞MTF-2＞MTF-1＞
MTF-0.5 ＞ MT ＞ pure TiO2, which suggests that the TiO2/Fe2O3

heterojunction and mica could promote the production of reactive ra-
dicals. Also, the intensity of ∙O2

− of all samples are higher than that of
∙OH. Therefore, it is anticipated that ∙O2

− plays a leading role in the
photodegradation of acetaldehyde of this work.

The scavenger experiment of MTF-1.5 composite was performed to
further verify the role of ∙O2

− and ∙OH [37,38]. The ∙O2
− scavenger is p-

benzoquinone (PBQ) and ∙OH scavenger is 2,2,6,6-tetramethyl-1-pi-
peridinyloxy (TEMPO). The more photocatalytic performance de-
creased, the more important of corresponding radicals played. As
shown in Fig. 12, the photodegradation efficiency of MTF-1.5 compo-
site sharply decreased from 80% to 60% with PBQ or 42% with TEMPO,
when photo-∙O2

− or ∙OH are captured, respectively. Thus, it can be
inferred that ∙O2

− are more active in acetaldehyde degradation in
contrast to ∙OH, which is consistent with the results of ESR.

3.4. Mechanism of enhanced photocatalytic activity

Based on the results, we propose a possible mechanism for the en-
hanced photocatalytic performance of MTF ternary composite. As illu-
strated in Fig. 13, when TiO2 contacts Fe2O3 to obtain an equalized
Fermi level by heterojunction, the electrons flow from Fe2O3 to TiO2.
There is a positive region adjacent to TiO2 in the heterojunction. While,
the holes flow from TiO2 to Fe2O3, resulting in the formation of a ne-
gative region adjacent to Fe2O3 in the heterojunction. Thus, an internal
electric field is constructed between TiO2 and Fe2O3 [39,40]. The
electrons accumulated in the CB of TiO2 will react with O2 to form ∙O2

−,
while the accumulated holes in the VB of Fe2O3 will react with H2O and
OH– to form ∙OH. The adsorbed acetaldehyde was oxidized on the
surface of the photocatalyst. In addition, mica serving as reflection core
can further improve the light harvesting of TiO2/Fe2O3 shell layer.
Therefore, the synergy of mica, TiO2 and Fe2O3 greatly enhances the
ternary composite photocatalytic performance without decreasing its
pearlescent effect.

4. Conclusion

In this work, a novel MTF-x photocatalytic composite pearlescent
pigment was successfully synthesized by a sol-gel assisted hydrothermal
method. The crystal structure, morphology, and optical properties of
the product materials were studied. The UV–Vis results show that the
light utilization efficiency can be improved by introducing the mica
core into the ternary composite. Compared with TiO2 and MT, MTF-x (x
= 0.5–2) composite pearlescent pigments exhibited an enhanced pho-
tocatalytic performance. The MTF-1.5 composite demonstrated the
highest photodegradation efficiency for acetaldehyde (80%) and CO2

mineralization efficiency (55%) in this work. ·O2
− play a key role in the

acetaldehyde photocatalytic degradation. Also, the photoinduced hole-
electron pairs separation can be promoted by the TiO2/Fe2O3 hetero-
junction. This work provides a facile route to develop a stable and ef-
ficient photocatalytic composite pearlescent pigment for acetaldehyde
degradation, which exhibits a high degradation and conversion effi-
ciency. The MTF composite pearlescent pigments can also be expected
to degrade other VOCs for the indoor air purification as the functional
decorative additive in the finish paint.
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