Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Photocatalytic properties of novel two-dimensional B_4C_3/g - C_3N_4 van der Waals heterojunction with moderate bandgap and high carrier mobility: A theoretical study

Asad Mahmood*, Gansheng Shi, Xiao Wang, Xiaofeng Xie, Jing Sun

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai, Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road, Shanghai, 200050, PR China

ARTICLE INFO	A B S T R A C T				
Keywords: Two-dimensional materials B4C3/g-C3N4 heterostructure DFT Photocatalysis	Developing two-dimensional heterojunctions is an excellent approach to achieve exceptional optical, electrical, and photocatalytic properties. Here, we used the periodic density functional theory simulations to engineer the electronic band structure, charge separation efficiency, as well as the photocatalytic properties of g - C_3N_4 and B_4C_3 based two-dimensional van der Waals heterojunctions. The effect of strain on the band edge energy and band structure was investigated in detail. The effective mass of electrons ($m_e^*/m_o = 0.76$) and holes ($m_h^*/m_o = 1.16$) in the B_4C_3/g - C_3N_4 heterojunction predicted a superior mobility than in isolated g - C_3N_4 monolayer ($m_e^* = 0.98$; $m_h^* = 1.34$). The ΔG_{H^*} value (-0.10 eV) of the atomic hydrogen on B_4C_3/g - C_3N_4 heterojunction confirmed the superior HER performance in contrast to isolated g - C_3N_4 ($\Delta G_{H^*} = 0.108 \text{ eV}$) and B_4C_3 ($\Delta G_{H^*} =$				

photocatalytic water splitting and optoelectrical applications.

1. Introduction

Recently, two-dimensional (2D) materials, e.g., graphitic carbon nitride (g-C₃N₄), graphene, Mxene (i.e., Ti₂C, CrC₂), and transition metal dichalcogenides (i.e., WS₂, MoS₂, SnS₂) are viewed as promising materials in several technological fields, for their unique electronic structure, and remarkable optical and electrical properties [1–5]. As an example, metal dichalcogenides have been explored for applications in field effect transistors (FETs) [6], logic circuits [7], and nonvolatile memory devices [8], which have produced some promising results. Similarly, g- C_3N_4 is a n-type semiconductor material, which is under immense investigation for the photocatalytic and energy applications, due to its outstanding electronic structure and light harvesting capability within the visible region of the solar spectrum [9,10]. Besides, g-C₃N₄ exhibits good chemical and thermodynamic stability, which make it a promising visible light active nonmetal photocatalyst [11]. Having said that, the usefulness of pristine g-C₃N₄ is limited because of the low rate of visible light absorption, the robust recombination rate of photoinduced charge carriers, and small specific surface area [12]. Therefore, it is fundamental to overcome these challenges, which will certainly enhance the photocatalytic properties of g-C₃N₄. To this end, the chemical and microwave exfoliation techniques have been found useful

to significantly increase the specific surface area of g-C₃N₄ in addition to generating new reactive sites [13,14]. Also, the photoinduced holeelectron pair separation process in g-C₃N₄ can be improved through the formation of heterojunctions and cocatalysts compositing. For instance, silver chromate (Ag₂CrO₄) nanoparticles have been effectively anchored on g-C₃N₄ to facilitate the hole-electron separation [15]. The asprepared composites demonstrated excellent photocatalytic performance (14 times greater) for the hydrogen evolution reaction (HER) when compared with pristine g-C₃N₄. The improved photocatalytic activity was attributed to the extended light harvesting capability of g-C₃N₄ by Ag₂CrO₄ decoration. Additionally, the valence and conduction band edge position suggested the formation of a Z-scheme charge transfer in g-C₃N₄/Ag₂CrO₄ nanocomposites. Under such circumstances, the photogenerated electrons in the conduction band (CB) of Ag₂CrO₄ will transfer and interact with the holes contained in the valence band (VB) of g-C₃N₄, which will ultimately prolong the time of electrons in the CB of g-C₃N₄ and holes in the VB of Ag₂CrO₄. Yet another attempt was reported by Kumar et al. [16]. They synthesized oxidized g-C₃N₄ nanosheets decorated with polyaniline nanofibers (Pani-NF), which demonstrated good adsorption capability for the removal of hexavalent chromium (Cr(VI)) in the aqueous solution. The positively charged surface of g-C₃N₄/Pani-NF, determined via zeta potential analysis and

-0.22 eV) monolayers. Our study offers possibilities to produce a novel B₄C₃/g-C₃N₄ heterojunction for the

* Corresponding author.

E-mail address: amkhan036@yahoo.com (A. Mahmood).

https://doi.org/10.1016/j.apcatb.2020.119310

Received 22 April 2020; Received in revised form 1 July 2020; Accepted 4 July 2020 Available online 09 July 2020

0926-3373/ © 2020 Elsevier B.V. All rights reserved.

the inclusion of nitrogen and oxygen containing functional groups triggered the electrostatic binding and efficient adsorption of Cr(VI). The growth of in-situ ZnIn₂S₄ nanosheets on g-C₃N₄ have been proved to exhibit much better photocatalytic activity and improved light harvesting capabilities for the HER [17]. The configuration of these heterostructures assisted the interfacial charge transfer under light irradiation from g-C₃N₄ to ZnIn₂S₄, which improved the charge separation process.

In this regard, many attempts have been reported, which take into account the g-C₃N₄ nanocomposites with other nanostructures, such as, Al-O bridged g-C₃N₄/α-Fe₂O₃ [18], g-C₃N₄/SrTiO₃ [19], CdS/g-C₃N₄ [20], FeVO₄/g-C₃N₄ [21], Ag₂CrO₄/g-C₃N₄/graphene oxide [22], SnO₂/ B-P co-doped g-C₃N₄ [23], and g-C₃N₄/bismuth-based oxide nanocomposites [24]. Compared with isolated materials, development of 2D composites, referred to as van-der Waals heterostructures can achieve exceptional optical, electrical, and photocatalytic properties, which are often designed by consecutive layer by layer deposition [1]. For example, a combination of MoS₂ and MoSe₂ monolayer by hexagonalboron nitride has revealed remarkable optical yield and narrowing of the exciton emission line width [25]. Additionally, the stacking of 2D semiconductor monolayers could eventually build a composite structure, which might efficiently separate the photoinduced hole-electron pairs [26]. According to their band energy alignment, these heterojunctions are described as Type-I, Type-II, and Type-III heterojunctions. In Type-I heterojunction, the conduction and valence band of one semiconductor fall within the energy bands of the other semiconductor material (straddle alignment), e.g., CdIn₂S₄/g-C₃N₄ [2,27]. In Type-II (staggered alignment), one of the band energy edge, i.e., conduction band minimum (CBM) or valence band maximum (VBM) aligns within the energy bands of another semiconductor, e.g., n-MoS₂/p-Ge [28] and CsPbBrCl₂/ and CsPbBrCl₂/g-C₃N₄ [29]. In Type-III, the VBM and CBM are totally separated (generally known as broken gap), e.g., InAs/AlSb/ GaSb [30]. The difference in these configurations tremendously influences the charge carrier mechanism. Among these, the Type-II heterojunction is regarded as the best option for the photocatalytic applications. In this type of heterojunction, the charge dynamics at the heterointerface play an important role in the photoinduced hole-electron pair separation [31]. As an example, the electron could be injected into a ntype of semiconductor material whilst the holes are likely to remain at or pumped into a p-type of semiconductor. A central electric field is created across the hetero-interface, which boost the charge separation.

Recently, boron atom containing 2D materials frameworks with transition metals as well as with carbon atom has been reported, which exhibit a graphene like morphology. For instance, Zhang et al. [32]. theoretically proposed iron based 2D honeycomb boron network (FeB₂). The Fermi velocity of FeB₂ was reported to have comparable value as that of graphene. Their results indicated that the electron transfer from Fe to B in the FeB₂ network render more stability to the 2D network. Also, the Fe-d and B-p states were found to induce the Dirac state in FeB₂. The as prepared FeB₂ system revealed outstanding thermal (up to 2000 K) and dynamic stability. Likewise, Popov et al. [33] examined the nature of chemical bonding in honeycomb epitaxial BC₃ sheets. It was noticed that replacement of every fourth carbon atom of graphene with a boron atom will modify the chemical bonding. In the BC₃ system, the boron atom is surrounded by carbon atoms, which causes boron to create two-center-two-electron (2c-2e) B–C σ bonds. On the other hand, boron only participates in the multicenter (3c-2e or 4c-2e) σ bonds in a stable 2D pure boron lattice, the α -sheet. The formation of π -bonding BC₃ hexagons were found to be composed of carbon atoms only, which showed similar π -bonding as in benzene, while different from graphene π -bonding. This study is helpful to understand different imperfections in 2D material, i.e., point defects and variable vacancies, adatoms and substitutional impurities. In line with the previous work by Exner and Schleyer in 2000 [34], Change et al. [35] recently proposed a novel metal free two-dimensional boron carbide (B₄C₃) using periodic density functional theory (DFT), quantum chemical

calculation, and swarm-intelligence structure searching method. The detailed structure analysis of B₄C₃ using electron localization function (ELF) indicated that the electron transfer from boron to carbon will render ionic character, which will eventually result in a strong interaction. Also, the existence of σ -like sp² hybridization similar to that in graphene further recommends its stability. The electron transfers from B to C (σ donation) will subsequently delocalize around the B₄C₃ network (π acceptance), which will result in the formation of a multicenter carbon network with boron. The unit cell of B₄C₃ monolayer exhibit three seven-center-two-electrons (7c-2e) π bonds, 2c-2e B–C σ bonds and three center-two-electron (3c-2e) C-B-B σ bonds. The carrier mobility of B_4C_3 is comparable with other two-dimensional materials such as $g-C_3N_4$ [35]. Additionally, the proposed monolaver structure revealed good thermodynamic stability, high charge carrier mobility, and appropriate band edge position to reduce CO₂. Also, the light absorption capability of B₄C₃ within a broad visible range further implements its usefulness for the visible light photocatalytic process. As it is well thought out that designing novel heterojunctions have the capacity to orchestrate new materials with outstanding optical and electrical performance. Hence, the thermal and dynamic stability and experimental realization of B₄C₃ inspired us to study g-C₃N₄ and B₄C₃ based heterojunctions.

Here, we performed periodic DFT calculations to study the g-C₃N₄ and B₄C₃ heterojunctions. The interfacial binding energy, electronic structure, e.g., band structure and density of state (DOS), population analysis, electrostatic potential, dielectric and optical absorption were studied in depth. The stability of two different configurations were estimated, including g-C₃N₄/B₄C₃ and B₄C₃/g-C₃N₄, which integrated B₄C₃ and g-C₃N₄ as being the top layers, respectively. Also, we simulated the band edge position to understand the charge transfer mechanism at the interface. The electron density difference (EDD), Mulliken and Hirshfeld charges on different atoms were also explored. The band energy edge position and bandgap under applied strain were also studied. The results revealed that configuring g-C₃N₄ on B₄C₃ is energetically more favorable than growing B₄C₃ on g-C₃N₄. Also, the interfacing of B₄C₃ with g-C₃N₄ substantially expanded the light absorption capability within the visible region. Moreover, the high adsorption energy for a single water molecule on B_4C_3/g - C_3N_4 in contrast to g-C₃N₄ monolayer implies its effectiveness for the water splitting and photocatalytic reactions. To test this hypothesis, a detailed site selective HER was simulated and the corresponding free energy values were calculated for the g-C₃N₄, B₄C₃ monolayers and B₄C₃/g-C₃N₄ heterojunction. This study offers a new perspective to formulate a metal free green photocatalyst, which will be useful for the visible light water splitting as well as other photocatalytic applications.

2. Computation details

The periodic density functional theory (DFT) calculations were performed using Cambridge Serial Total Energy Package (CASTEP) [36]. The geometry optimization was carried out using Generalized Gradient Approximation (GGA) to describe the exchange and correlation potential implemented by Perdew-Burke-Ernzerhof (PBE) [37,38]. As the weak interaction between g-C₃N₄ and B₄C₃ was anticipated, therefore, the long range van der Waals (vdW) interactions were described by a simple pairwise force field utilizing the Grimme method (DFT-D2) [39]. Prior to the composite formation, the isolated g-C₃N₄ and B₄C₃ monolayers were fully relaxed. The electronic configurations for different elements include; H: 1s¹; N: [He] 2s² 2p³; O: [He] 2s² 2p⁴; B: [He] 2s² 2p¹; and C: [He] 2s² 2p². The cutoff energy was kept constant as 700 eV in all of the calculations. A separate hybrid function (HSE06) was used to precisely estimate the electronic structure of different models, used in this study [40]. A norm-conserving pseudopotential was used for the geometry optimization and properties calculation. A vacuum slab of 20 Å was used for the structure optimization and properties calculations. The electrostatic potential was determined

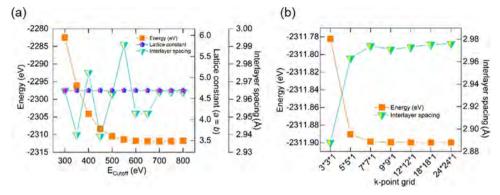


Fig. 1. The variation of energy and structural parameters with respect to E_{Cutoff} and k-point grid.

using a vacuum slab of 30 Å. Before choosing the convergence parameters, several tests were performed to trace the optimization criteria for the g-C₃N₄ and B₄C₃ monolayers and their heterojunctions. First we searched for an energy cutoff value (E_{Cutoff}, eV), which was tested in the range from 300 eV to 800 eV with an increasing step size of 50 eV (Fig. 1a). Interestingly, the cutoff energy did not affect the lattice parameters, nevertheless, the total energy of the system and interlayer spacing were significantly influenced by E_{Cutoff} value. According to these results, we selected 700 eV as the E_{Cutoff} in all calculations. Next, we optimized the Monkhorst - Pack mesh by utilizing different kpoints and monitored the total energy of the system, which were chosen as $12 \times 12 \times 1$ (Fig. 1b). The convergence criteria, including selfconsistent tolerance factor and maximum force were used as 10^{-6} eV/ atom and 0.01 eV/Å, respectively. The ab-initio molecular dynamics (AIMD) simulations were performed at a constant temperature 300 K, 400 K, and 500 K using the Nose-Hoover method [41,42]. The total time steps were 5000 with 2.0 fs per step.

The interaction of water molecules with the B_4C_3/g - C_3N_4 heterojunction was studied in detail to comprehend its adsorption properties. The adsorption energy (E_{ads}) was calculated as:

$$E_{ads} = E_{surface/molecule} - E_{surface} - E_{molecule}$$
(1)

Where, $E_{surface/molecue}$ is the energy of adsorption complex, $E_{surface}$ is energy of the clean monolayers or B_4C_3/g - C_3N_4 heterojunction, and $E_{molecule}$ is the energy of the water molecule in the gas phase. The E_{ads} per water molecule was calculated as:

$$E_{ads} = (E_{surface/molecules} - (n \times E_{molecule}) - E_{surface})/n$$
(2)

Where n is the number of water molecules on the surface. The hydrogen evolution reaction (HER) was studied to test the photocatalytic performance for water splitting reaction. A 2 × 2 × 1 supercell was used to study the HER capability of the B₄C₃ and g-C₃N₄ monolayers and B₄C₃/g-C₃N₄ heterojunction. Also, different sites were selected to test the site selective HER performance. Two steps are involved in the HER reaction, which produce H₂ from the water splitting reaction. In the first step, the atomic H adsorbed on a catalyst surface while in the second step the formation and release of molecular H₂ occur [43]. The Gibbs free energy (ΔG_{H^*}) is used to assess the HER performance. The HER reaction barrier (over potential) is determined by the adsorption of intermediate of one H atom.

$$H^+ + e^- + \stackrel{*}{\to} \stackrel{\Delta G_{H^*}}{\to} H^* \tag{3}$$

Where the * and H* represents the active site and adsorb intermediate, respectively. Under standard conditions (i.e., U = 0; pH = 0; T = 298.15 K), the chemical potential of $H^+ + e^-$ (μ ($H^+ + e^-$)) is equivalent to that of $\frac{1}{2}H_2$ ($\frac{1}{2}\mu H_2$). The hydrogen electrode model is used to calculate the term $\frac{1}{2}\mu H_2$ [44]. Thus, the ΔG_{H^*} is calculated as:

$$\Delta G_{H^*} = \Delta E_{H^*} + \Delta E_{ZPE} - T\Delta S_{H^*}$$
(4)

3

Where the ΔE_{H^*} is the adsorption energy of hydrogen and ΔE_{ZPE} is the change in zero-point energy, which is determined through Eq. (5):

$$\Delta E_{ZPE} = E_{ZPE}^{H^*} - E_{ZPE}^* - \frac{1}{2} E_{ZPE}^{H2}$$
(5)

Where E_{ZPE}^{\ast} , $E_{ZPE}^{H^{\ast}}$, and E_{ZPE}^{H2} are the zero-point energy of the clean substrate, adsorbed hydrogen and hydrogen molecule in the gas phase. These values are calculated through DFT calculation. The temperature T is equal to 298.15 K, while the $\Delta S_{H^{\ast}}$ is the change in entropy of the gas phase and adsorbed hydrogen atom [45]. The ideal value of HER is zero. It is worth noting that the HER value is bad when the adsorption of H is too strong or too weak.

3. Results and discussion

3.1. Geometric and electronic structure of $g-C_3N_4$ and B_4C_3 monolayers

Graphitic-C₃N₄ exhibits a π-conjugated laminar structure, containing sp² bonded carbon and nitrogen atoms building the graphitic planes [46]. These planes are piled in a very staggered manner. The g-C₃N₄ monolayer studied in this work was constructed on a triazine ring that contains a hexagonal unit cell. The optimized structure of g-C₃N₄ monolayer is given in Fig. 2, with an extended view in Fig. S1. Because of the exclusive chemical environment, the nitrogen atoms are often divided into two different types, which feature 1) the fully saturated N atoms (specified as N1) surrounded by three C atoms and 2) the partially saturated N atoms (specified as N2) surrounded by two C atoms. After geometry optimization, the cell parameters of g-C₃N₄ monolayer were determined as a = b = 4.7844 Å (Table 1), which is in close agreement with the earlier reported values [47]. The bond distance between N1-C and N2-C are 1.458 Å and 1.330 Å, respectively (Fig. 2a). The band structure and partial density of state (PDOS) were calculated to further understand the electronic structure of the g-C₃N₄ monolayer. The calculated bandgap value of the g-C₃N₄ monolayer is 1.572 eV utilizing GGA-PBE level theory (Table 1). It is well thought out that the DFT undermines the bandgap values to a great extent [48]. Therefore, we also used the hybrid (HSE06) function to precisely estimate the bandgap values. The calculated bandgap value in this case is 3.123 eV, which is very close to the previously reported values for this kind of system (Fig. 2b) [49,50]. Also, the valence band maximum (VBM) and conduction band minimum (CBM) are located at the same Gpoint, hence, g-C₃N₄ monolayer is a direct bandgap semiconductor material. The PDOS of g-C₃N₄ shows that the upper valence band (VB) is primarily populated by the N2p states (Fig. 2d). A small contribution from the N2s can also be seen. The lower conduction band (CB) is occupied by C2p and N2p states.

The relaxed structure of B_4C_3 is given in Figs. 3 and S1. Two different types of ring structures are visible in the B_4C_3 monolayer. The monolayer is composed of repeating B_4C_3 hexagonal cluster rings connected through hollow B_3C_3 rings. In the B_4C_3 monolayer, B exhibits

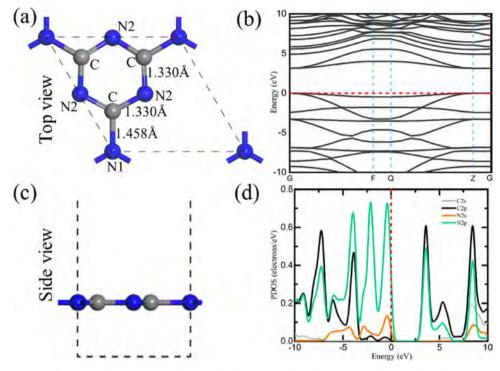


Fig. 2. Geometrically optimized structure (a); electronic band structure (b); side view (c); and PDOS (d) of the g-C₃N₄ monolayer.

two different coordination environments. In the case of B1, B is hexacoordinated with three B and three C atoms. On the other hand, the B2 atoms are tetrtacoordinated with one B and three C atoms. We measured different bond lengths represented by the alphabets in Fig. 3a. The corresponding bond lengths a, b, c, d, and e are measured as 1.518 Å, 1.591 Å, 1.551 Å, 1.591 Å, and 1.518 Å, respectively. As B₄C₃ is a metal free 2D system, therefore, it can be used as a green photocatalyst. The calculated band structure of B_4C_3 is given in Fig. 3b. It is clear from the band structure that B_4C_3 is a semiconductor material. Initially, the bandgap of GG-PBE was calculated as 1.655 eV, which was then corrected to 2.39 eV using hybrid HSE06. The VBM and CBM are located at G and M points, respectively, hence, B₄C₃ is an indirect bandgap semiconductor material. This behavior is useful in photocatalytic process, which prolong the photogenerated hole-electron pair's separation. The PDOS of the B_4C_3 is given in Fig. 3d. The upper VB is mainly composed of the C2p states, while the lowest part of the CB is populated by the B2p states. The electron density of g-C₃N₄ and B₄C₃ is also given in Fig. S2, which highlights the electron density distribution among the atoms in different chemical environments.

3.2. Geometric and electronic structure of $g-C_3N_4$ and B_4C_3 heterojunctions

Two different composite models were used to simulate the g-C₃N₄ and B₄C₃-based heterojunctions (Fig. 4). In the case of g-C₃N₄/B₄C₃, the

 B_4C_3 monolayer was configured right above the *g*- C_3N_4 (Fig. 4a). In the case of B_4C_3/g - C_3N_4 , the *g*- C_3N_4 monolayer was kept as the top layer (Fig. 4e). The lattice mismatch between *g*- C_3N_4 and B_4C_3 is smaller than 2 %. In this regard, B_4C_3 will stretch out to a certain degree in *g*- C_3N_4 / B_4C_3 configuration. On the contrary, *g*- C_3N_4 will shrink to match the lattice in B_4C_3/g - C_3N_4 configuration. In either case, a small strain will be exhibited by these two-dimensional monolayers. After geometry optimization, the distance between *g*- C_3N_4 and B_4C_3 monolayers is 3.29 Å and 2.974 Å, which correspond to *g*- C_3N_4/B_4C_3 and B_4C_3/g - C_3N_4 configurations, respectively (Fig. 4a, e). The space between the monolayers can be regarded as vdW equilibrium spacing. The adhesion energy (E_{ad}) for both of these configuration was calculated using Eq. (6).

$$E_{ad} = E_{Combined} \cdot E_{g-C3N4} \cdot E_{B4C3}$$
(6)

Where, the $E_{Combined}$, E_{g-C3N4} , E_{B4C3} are the total energies of $g-C_3N_4$ / B_4C_3 or $B_4C_3/g-C_3N_4$ configuration, energy of $g-C_3N_4$ and B_4C_3 monolayers, respectively. The E_{ad} for $g-C_3N_4/B_4C_3$ and $B_4C_3/g-C_3N_4$ are calculated as 0.224 eV and 0.164 eV, respectively. These values suggested that $g-C_3N_4/B_4C_3$ interface is more strongly connected. Nevertheless, both of these configuration demonstrated a strong physical interaction and stability. The enthalpy energy values in Table 1 suggested that $B_4C_3/g-C_3N_4$ is thermodynamically (0.063 eV) more stable than $g-C_3N_4/B_4C_3$. We further studied structural changes in $g-C_3N_4/B_4C_3$ and $B_4C_3/g-C_3N_4$.

Table 1	
---------	--

Crystal lattice parameters, bandgap values, Hirshfeld charge distribution, and enthalpy of formation of g-C ₃ N ₄ and B ₄ C ₃ monolayers and their heterostructure	Crystal lattice parameter	rs, bandgap values, Hirshfe	d charge distribution, and e	nthalpy of formation of g-C ₃ N ₄	and B ₄ C ₃ monolayers and their heterostructures.
--	---------------------------	-----------------------------	------------------------------	---	--

Model	Lattice parameters (Å)	Bandgap (eV)			Hirshfeld		
	a = b	GGA-PBE	HSE06	С	Ν	В	
g-C ₃ N ₄	4.7844 Å	1.572	3.123	0.17	0.127		-1540.14912
B_4C_3	4.6904 Å	1.655	2.390	-0.16		0.12	-771.588864
g - C_3N_4/B_4C_3	-	1.395	2.537	-0.17 (B ₄ C ₃) 0.17 (g-C ₃ N ₄)	0.117	0.11	-2311.89961
B_4C_3/g - C_3N_4	-	1.316	2.459	-0.17 (B ₄ C ₃) 0.17 (g-C ₃ N ₄)	-0.12	0.11	-2311. 96237

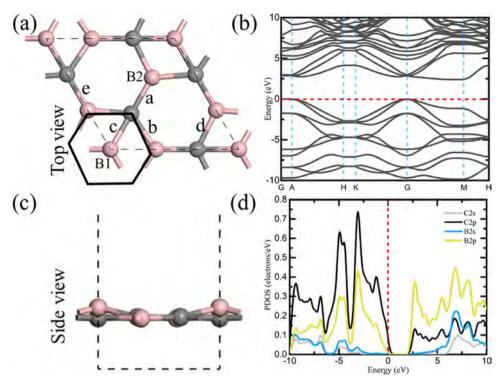


Fig. 3. Geometrically optimized structure (a); electronic band structure (b); side view (c); and PDOS (d) of the B₄C₃ monolayer.

layer are 1.544 Å, 1.627 Å, 1.561 Å, and 1.627 Å, respectively. The bonds, e, f, g in g-C₃N₄ are 1.329 Å, 1.331 Å, and 1.453 Å, respectively. When we compare these bond values in g-C₃N₄/B₄C₃ with the isolated g-C₃N₄ and B₄C₃ monolayers, it can be seen that a little change occurred in g-C₃N₄, while the B₄C₃ exhibited a more structural changes. As B₄C₃ stretched out to some extent in g-C₃N₄/B₄C₃ configuration to match the lattice of g-C₃N₄, Thus, the variation in bond length could be attributed to this extension as well as some minor contribution due the interaction of two layers is inevitable. The structural change in g-C₃N₄ could be attributed to the interaction of B₄C₃ and g-C₃N₄ monolayer in the composite framework. This behavior is in agreement with the vdW interaction determined through adsorption energy. A similar, behavior was observed in B₄C₃/g-C₃N₄, where the lattice of g-C₃N₄ shrunk to match the B₄C₃. The simulated electron density in Fig. S3 further describe the electron density distribution at the interface between B₄C₃ and g-C₃N₄ junction. The thermal stability of these heterojunctions was studied using AIMD simulations at different temperatures, which include 300 K, 400 K, and 500 K (Fig. S4). The snapshot at 10 ps suggest that the basic framework of the heterojunctions is still intact, while no splitting could be seen, which suggest that both of these configurations are stable in the temperature range from 300 - 500 K. Additionally, the layers B₄C₃/g-C₃N₄ were wrinkled under the influence of temperature, which can be restored under geometry optimization, suggesting no significant damage to the original materials framework.

The band structures of these configurations are given in Fig. 4c and g. The bandgap values of g-C₃N₄/B₄C₃ and B₄C₃/g-C₃N₄ are 1.395 eV and 1.316 eV at the GGA-PBE level theory, respectively. The HSE06 produced 2.537 and 2.459 eV of the bandgap values corresponding to g-C₃N₄/B₄C₃ and B₄C₃/g-C₃N₄, respectively. In this regard, it can be seen that, the composite formation, lowered the bandgap values of g-C₃N₄ to

Fig. 4. Geometrically optimized structure, electronic band structure, and DOS of the g-C₃N₄/B₄C₃ (a, b, c, d) and B₄C₃/g-C₃N₄ heterojunctions (e, f, g, h).

a great extent, when compared with the isolated g-C₃N₄ monolayer (3.123 eV). Hence, it can be anticipated that g-C₃N₄ and B₄C₃ composites will display better light harvesting properties, in contrast to isolated g-C₃N₄ monolayer. This behavior will facilitate the transfer of electrons from the VB to the CB in the composite structure, which will likely cause a red shift of the optical absorption edge. The PDOS of g- C_3N_4/B_4C_3 and B_4C_3/g - C_3N_4 configurations are given in Fig. 4d and h. The bandgap of B_4C_3 in the composite span from 0.0 to 2.24 eV, while that of $g-C_3N_4$ span from 0.34 to 2.60 eV. It can be seen that the upper VB is comprised of $g-C_3N_4$ while the lowest CB is occupied by B_4C_3 states, slightly lower (0.36 eV) than g-C₃N₄. It can be inferred that the VB offset between B₄C₃ and g-C₃N₄ is 0.34 eV, while the CB offset is 0.36 eV in the g-C₃N₄/B₄C₃ heterostructure. These observations suggested, that once the B₄C₃ monolayer covers the g-C₃N₄ monolayer, a type-II kind of heterojunction is formed [51-53]. Therefore, it is anticipated that under light illumination, the electron will transfer from the N2p states in g-C₃N₄ to B2p in B₄C₃. Due to a decrease in the bandgap energy, this excitation will be facilitated quite well. Also, the transfer of the photoexcited electrons from the g-C₃N₄ to B₄C₃ will shuttle the electrons for a longer time, which will improve the photoinduced charge separation process in the composite structure.

We further calculated the electron density difference to study the charge transfer process in the composite structures (Fig. 5). The blue and yellow regions depicts the charge accumulation and depleting regions, respectively. The charge accumulation primarily occurred at the interface between the two-dimensional B_4C_3 and g- C_3N_4 monolayers. As the weak coupling between the donor-acceptor is evident by large separation, still there can be seen some charge transfer between the two layers (isovalue = 0.002). The charge is accumulated on B_4C_3 , while a depletion behavior can be seen around the g- C_3N_4 monolayer. Interestingly, the region around N atoms in g- C_3N_4 and B atoms in B_4C_3 demonstrated more charge transfer (Fig. 5b). It is anticipated that under light irradiation, the photoinduced electrons will accumulate in the B_4C_3 region, while the hole will accumulate in g- C_3N_4 monolayer. This behavior is useful in the hole-electron charge separation process. The Mulliken values of C and N atoms in g- C_3N_4 monolayer and B and C in

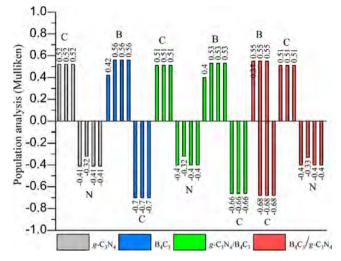


Fig. 6. Mulliken population analysis of the g-C₃N₄ and B₄C₃ monolayers and g-C₃N₄/B₄C₃ and B₄C₃/g-C₃N₄ heterojunctions.

 B_4C_3 monolayer reduced in the composite structures (Fig. 6). The variations in the partial atomic charges estimated by Mulliken population analysis before and after compositing of these nanostructures depict charge redistribution, which can be attributed to the interaction at the interface. The Hirshfeld charge analysis followed a similar trend, where the values changed in the composite structure, in contrast to the monolayers (Table 1).

3.3. Optical properties and energy band edge position

We simulated the dielectric and optical absorption spectra to determine the optical absorption properties of g-C₃N₄ and B₄C₃ monolayers, and their composites. The optical properties of materials can be studied by using the complex dielectric function given in Eq. (7).

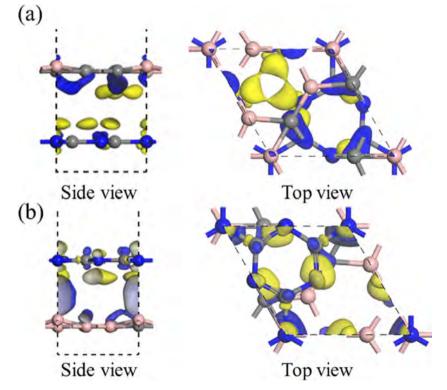
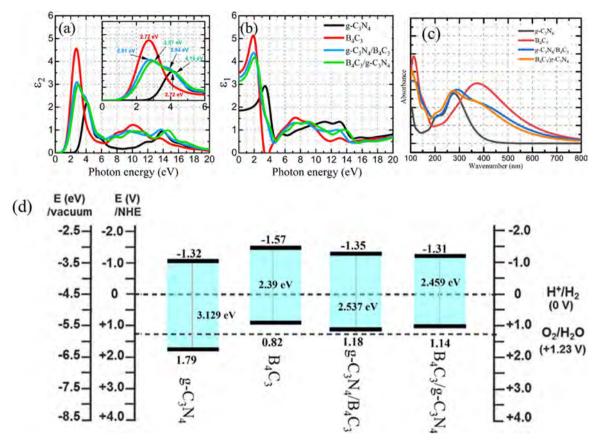



Fig. 5. Electron density difference of the $g-C_3N_4/B_4C_3$ (a) and $B_4C_3/g-C_3N_4$ (b) heterojunctions.

Fig. 7. Simulated optical properties of g- C_3N_4 and B_4C_3 monolayers and their heterojunctions; imaginary (ε_2) dielectric constant (a), real (ε_1) dielectric constant (b), and optical absorption spectra (c). The band edge position of the g- C_3N_4 and B_4C_3 monolayers and g- C_3N_4/B_4C_3 and B_4C_3/g - C_3N_4 heterojunctions (d). The values are given with respect to the NHE in volts (V) and vacuum in electron volts (eV). The horizontal dashed line represents the water redox potentials at pH = 0.

$$\varepsilon(\omega) = \varepsilon_1 + i\varepsilon_2 \tag{7}$$

Where ε_1 and ε_2 are the real and imaginary components of dielectric functions, respectively, while ω represents the photon frequency. The values of $\varepsilon_2(\omega)$ are calculated from the electronic structure using Eq. (8) [54].

$${}^{\mathsf{c}}_{2(q \to O_{\hat{\mathbf{u}}, h\omega}) = \frac{2\pi e^2}{\Omega \varepsilon_0} \sum_{k, v, c} I\langle \psi_k^c \mathbf{u}. r | \psi_k^v \rangle |^2 \delta(\mathbf{E}_k^c - \mathbf{E}_k^v - \mathbf{E})}$$
(8)

Where k is the reciprocal lattice, u is the incident electric field polarization, v and c are the valence and conduction band, respectively. Along these lines, the Kramer-Kroning relation can be used to calculate the real part of the dielectric function ($\varepsilon_1(\omega)$).

$$\varepsilon_{1} = 1 + \frac{2}{\pi} M \int_{0}^{\omega} \frac{\varepsilon_{2(\hat{\omega})\hat{\omega}}}{\hat{\omega}^{2} - \omega^{2}} d\omega$$
(9)

Moreover, the absorption \propto (ω) coefficient is given by Eq. (10) [55].

$$\propto (\omega) = \sqrt{2} \omega \left[\sqrt{\epsilon_1^2(\omega) + \epsilon_1^2(\omega)} - \epsilon_1(\omega) \right]^{\frac{1}{2}}$$
(10)

The imaginary part of the dielectric constant (ε_2) is given in Fig. 7a. The non-zero values of dielectric constant vs. photon energy depicts the absorption of light at a given frequency. Also, the values along the *x*axis are correlated with the behavior of a material in different frequency region. Pure *g*-C₃N₄ gives a broad peak centered around 4.16 eV, which falls within the near ultraviolet (UV)-A region. However, as the peak is extended to < 3 eV, the *g*-C₃N₄ monolayer will have poor visible light response (E_g = 3.123 eV). The B₄C₃ exhibited sharp peak around the 2.72 eV, which fall within the blue part of the visible region. However, this peak extended beyond this range to the lower energy values, therefore, it is anticipated that B₄C₃ will show good visible light absorptivity within a broad range (E_g = 2.390 eV). Interestingly, when the g-C₃N₄ and B₄C₃ monolayers were combined, a significant increase was observed in the light absorption capability of g-C₃N₄, which is evidenced from the shift of the peak position. For example, the g-C₃N₄/B₄C₃ exhibited a broad peak, which can be resolved in two distinguished peaks. The highest intensity peak appeared at 2.97 eV and relatively low energy peak at 3.94 eV. A similar trend was followed by B₄C₃/g-C₃N₄ configuration. These results suggest that the composite formation resulted in an improved light absorption, which is undoubtedly useful for the photocatalytic and other optical applications. The real part of the dielectric function (ϵ_1) is given in Fig. 7b. It followed the same pattern, where the light absorption behavior of the *g*-C₃N₄ was improved by the B₄C₃ compositing.

The simulated optical spectrum of isolated g- C_3N_4 monolayer showed absorption edge extending beyond 400 nm, however, pure B_4C_3 monolayer demonstrated absorption properties within the visible region (Fig. 7c). Therefore, it is anticipated that the composite of g- C_3N_4 and B_4C_3 will exhibit superior visible light response. The simulated absorption spectrum of the g- C_3N_4/B_4C_3 and B_4C_3/g - C_3N_4 configurations demonstrated a significant red shift in contrast to the pure g- C_3N_4 monolayer. This behavior suggested that the solar light utilization was greatly improved by the g- C_3N_4 and B_4C_3 composite formations, despite of whatever material is used as the top or base layer. Hence, the twodimensional heterojunction will significantly improve the solar light utilization, which is useful for developing a visible light active photocatalyst.

The VB and CB band edge position can determine the redox ability of a material. The Energy band edge position can be determined by Eqs. (11) and (12).

$$E_{VB} = \chi - E_e + 1/2E_g$$
 (11)

$$E_{CB} = E_{VB} - E_g \tag{12}$$

Where, the χ designate the absolute electronegativity of materials. The values of χ of g-C₃N₄ and B₄C₃ were determined as 4.73 and 4.12 eV, respectively. The energy of free electron on the hydrogen scale is given by $E_e = 4.5 \text{ eV}$. The bandgap (E_g) is calculated by HSE06. A fundamental requirement for the overall water splitting reaction is that the energy band edge position of a photocatalyst straddle the water redox potential. In this way, the VBM must be lower than the oxidation potential of O2/H2O and the CBM must be higher than the reduction potential of H⁺/H₂. Also, the pH values can also impact the water redox potential. In semiconductors, the BV holes with a chemical potential of +1.0 to +3.5 V (vs E_{NHE} , pH = 0) are regarded as strong oxidants, whilst the CB electrons with chemical potentials of +0.5 to -1.5 V (vs ENHE, pH = 0) are considered good reductant [56]. Based on our calculations, the band edge positions of g-C₃N₄ and B₄C₃ monolayers and their heterojunctions are given in Fig. 7d. The VB and CB edge position of g-C₃N₄ were determined as 1.79 and -1.32 vs. normal hydrogen electrode (NHE), respectively. The VB and CB band edge position of B_4C_3 were determined as 0.82 eV and -1.57 eV, respectively, which demonstrate powerful reducing and oxidizing properties. After compositing, the band edge position was significantly altered in $g-C_3N_4/$ B₄C₃ and B₄C₃/g-C₃N₄ heterojunctions. These properties are further modified after heterojunction formation, which ultimately make them a superior photocatalyst [57]. Thus these heterojunctions can be used for the hydrogen evolution reaction, while the energy edge position can be further tuned by doping, tensile strength and formation of Z-scheme.

The work function of g-C₃N₄ and B₄C₃ monolayers and their composites are given in Fig. 8, which can be used to determine the band alignment in materials. The work function is described as $\Phi = E_{vac} - E_F$, where E_{vac} is the energy of stationery electrons in vacuum near the

surface and E_F is the Fermi energy. The work function of g-C₃N₄ and B₄C₃ is 4.474 eV and 4.798 eV, respectively. The work function is lowered in g-C₃N₄/B₄C₃ and B₄C₃/g-C₃N₄ configurations as 4.65 eV and 4.397 eV, respectively. The lowering of work function suggested that the electron flow from g-C₃N₄ to B₄C₃ after contact in order to align the Fermi energy of two semiconductors. This flow of charge will generate an internal electric field directed from g-C₃N₄ to B₄C₃. These results further confirmed the PDOS and EDD results, which predicts the electron flow from the g-C₃N₄ to B₄C₃ in the composite structure. Thus, it can be inferred that the g-C₃N₄ to B₄C₃ based composite structures will demonstrate better light harvesting properties and improved charge separation.

Due to stability and optimum bandgap, we further explored the behavior of B₄C₃/g-C₃N₄ system under an external strain. The effect of strain on the band edge energy position and bandgap of $B_4C_3/g-C_3N_4$ heterojunction was studied in detail. The strain was applied along the xand y directions and the corresponding band edge energy and bandgaps results are given in Figs. 9 and S5, respectively. Interestingly, the bandgap was substantially modified by applying an external strain along the x-direction (Fig. 9). The strain effect was minimal along the ydirection, however, still pronounced when compared with no strain. Moreover, with increasing negative strain, the bandgap was observed to decrease (1.29 eV; @-0.5 % strain) initially which the nonlinearly increased up to 2.56 eV (strain = -2 %) in contrast to no strain (2.45 eV). However, the positive strain decreased the bandgap nonlinearly. A similar behavior was observed along the y-direction, however, a relatively small effect was observed. This can be explained as; once the strain is applied, the lattice structure and atomic position of elements, which constitute a material framework are altered [58,59]. These changes in the geometry of atoms induce variation in the atomic energy

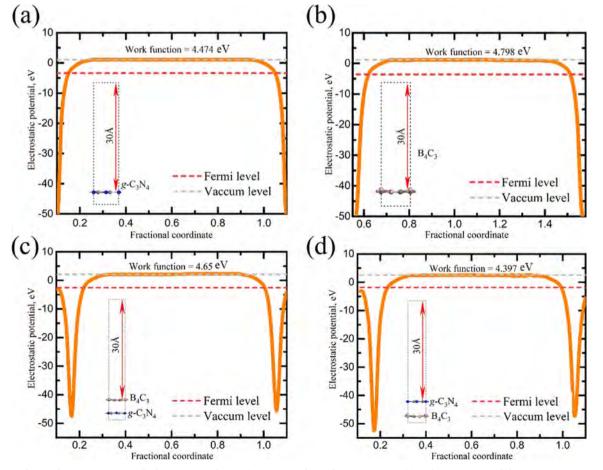


Fig. 8. Electrostatic potential of $g-C_3N_4$ monolayer (a), B_4C_3 monolayer (b), $g-C_3N_4/B_4C_3$ (c) and $B_4C_3/g-C_3N_4$ (d) heterojunctions.

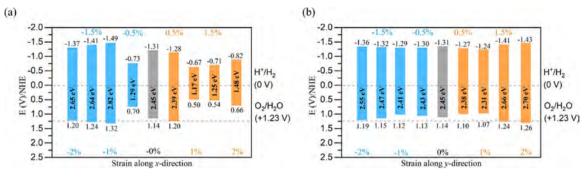


Fig. 9. Effect of applied strain on the band edge energy position of B₄C₃/g-C₃N₄ heterojunction.

levels, which will ultimately affect the VBM and CBM. According to the bandgap values and band energy edge position, the electrical and photocatalytic properties of these heterojunctions can be manipulated by applying an external strain, which offer a range of possibilities for the optical and electrical device engineering.

The effective mass of photoinduced charge carriers, i.e., holes and electrons significantly affect the photocatalytic performance of the photocatalytic materials. It has been well thought out that the photocatalytic performance of semiconductor materials is determined by the mobility and separation of photoinduced hole-electron pairs [60,61]. In this way, the effective masses of holes (m_h*/m_o) and electrons (m_e*/m_o) ascertain their capability to migrate [62]. Therefore, the effective masses can be used to determine the photocatalytic efficiency of materials. The effective masses of electrons and holes were calculated by using the Eq. (13):

$$\mathbf{m}^* = \hbar^2 \left(\frac{d^2 E}{dk^2} \right)^{-1} \tag{13}$$

Where \hbar is the reduced Plank constant, *E* is the band edge energy, and *k* is the wave vector. The corresponding *E*-*k* diagrams were fitted along the valence band maximum (VBM) and conduction band minimum (CBM) to calculate the m^* of electrons and holes respectively. The results are given in Table 2. The effective mass of electron is smaller than that of holes for the g-C₃N₄ monolayer along the high symmetry G \rightarrow F path. A similar behavior was observed for the G \rightarrow Z path. The mobility of charge carriers (μ) is inversely proportional to the effective masses, which can be expressed by Eq. (14):

$$\mu = \frac{q\tau}{m^*} \tag{14}$$

Where q and τ are the charge number and scattering time, respectively. According to this equation, a low effective mass indicates a high mobility, which will eventually improve the charge migration. Thus, it can be inferred that electrons are more mobile than holes in pure g-C₃N₄ monolayer. Also, there is a small difference in the hole-electron effective masses along the different directions, which suggest anisotropy. On the contrary, the effective mass of electrons is heavier than holes in B₄C₃, which suggest a greater hole mobility in B₄C₃ than pure g-C₃N₄. Additionally, the hole-electron effective masses in B₄C₃ are almost similar in different directions, which suggested an isotropy in B₄C₃. When the B₄C₃ and g-C₃N₄ are combined to form the heterojunction, the effective mass of electron and holes are significantly affected. For example, the effective mass of electrons and holes in $B_4C_3/g-C_3N_4$ decreased to 0.76 and 1.16 in G \rightarrow F direction. Similar behavior could be seen in G \rightarrow Z direction. Thus, the photogenerated hole-electron pairs are anticipated to be more mobile in $B_4C_3/g-C_3N_4$ heterojunction contrasted to $g-C_3N_4$ monolayer, which suggest that the charge separation process in $B_4C_3/g-C_3N_4$ heterojunction is improved. The average relative ratio ($D = m_h^*/m_e^*$) between the effective mass of electrons and holes in different directions is also given in Table 2. For the most part, a high D value signifies the low recombination rate and greater mobility of the photogenerated hole-electron pairs. The given values suggest that the relative ratio of $B_4C_3/g-C_3N_4$ is greater than $g-C_3N_4$ and B_4C_3 monolayers, which further evidences the effective charge separation process in $B_4C_3/g-C_3N_4$ heterojunction.

3.4. Adsorption of a single water molecule

A significant aspect in photocatalysis will be the behavior of water molecules on a photocatalyst surface. In many surface catalyzed reactions, the adsorption of water molecules is crucial, which are consumed to generate reactive species, e.g., super oxide (•O₂-) and hydroxyl (•OH) radicals [63]. In order to elaborate the photocatalytic properties, we studied the interaction of a single water molecule with g-C₃N₄ and B₄C₃ based heterojunctions. Initially, we searched for the most stable configuration of a water molecule on both the g-C₃N₄/B₄C₃ and B₄C₃/g-C₃N₄ composites. The configuration, which exhibit the highest adsorption energy (Eads) values were selected for the band structure and density of state calculation. Different adsorption configurations of a single water molecule on the $g-C_3N_4/B_4C_3$ composite is given in Fig. S6. The E_{ads} values are also given. The configuration in which the water molecule is attracted to the hexacoordinated boron (B1) layer through the O_{water} -B1 bond exhibit the highest E_{ads} value (0.573 eV) (Fig. S6a). The distance between the B1 and Owater is 2.37 Å. In the other configurations (Fig. S6b and S6c), the Eads values are in the similar range, however, all of these adsorption energy values exhibited a relatively weak interaction. The O-H bond distance (0.967 Å) and H-O-H bond angle (103.399°) in an isolated optimized water molecule (Fig. S7) changed to 0.97 Å and 103.303° in the adsorbed configuration. It can be inferred that the water molecule is only weakly adsorb on g-C₃N₄/B₄C₃ composite, in which the B₄C₃ monolayer is the surface layer. When g-

Table 2

Effective mass of electrons and holes of isolated g-C₃N₄ and B₄C₃ monolayers, and B₄C₃/g-C₃N₄ heterojunction. The relative ratio of holes and electrons is also given. Where m_0 is the rest mass of electron.

	m_e^*/m_o		m_h^*/m_o	m_h^*/m_o		m_e^*/m_o			Relative ratio (D) _{Average}
	G→F	G→Z	G→F	G→Z	G→M	G→K	G→M	G→K	
g-C ₃ N ₄ B ₄ C ₃	0.98	1.0	1.34	1.54		0.50	0.10	0.11	1.45
B ₄ C ₃ B ₄ C ₃ /g-C ₃ N ₄	0.76	0.76	1.16	1.31	0.51	0.53	53 0.13	0.11	0.23 1.62

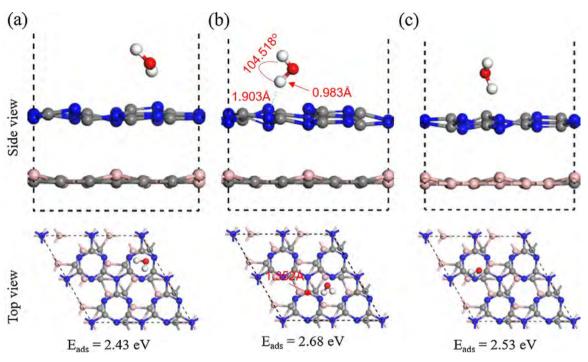


Fig. 10. Adsorption of a single water molecule on B_4C_3/g - C_3N_4 heterojunction.

C₃N₄ was used as the top layer in the heterostructure, a tremendous increase in the Eads values was observed (Fig. 10). All of the configurations exhibited a high Eads value, in contrast to the g-C₃N₄/B₄C₃ configuration. The configuration in which the H_{water} is attracted towards the space between N2 atoms in g-C3N4 monolayer displayed the highest E_{ads} value (2.68 eV) (Fig. 10b). Such a high adsorption value suggested that g-C₃N₄ has the ability to chemically adsorb the water molecule, which will eventually facilitate the water splitting reaction. The distance between H_{water} and surface N is 1.903 Å. The O–H bond distance and H–O–H bond angle is 0.983 Å and 104.518°, respectively, which confirmed the strong attraction of the water molecule towards the g-C₃N₄. We also compared the adsorption of water molecule on an isolated g-C₃N₄ monolayer. The most stable adsorption configurations for a single water molecule on the isolated g-C₃N₄ monolayer are given in Fig. S8. The isolated g-C₃N₄ monolayer exhibited a poor absorptivity for a single water molecule, in contrast to the B_4C_3/g -C₃N₄ heterojunction. Thus, it can be inferred that, due to vdW interaction and charge redistribution in the composite framework, the adsorption capability was greatly improved for a single water molecule.

The electronic band structure, DOS, and electron density for the stable configuration is given in Fig. S9. The bandgap of g-C₃N₄/B₄C₃@ H₂O increased to 2.872 eV compared to g-C₃N₄/B₄C₃ composite (2.537 eV) (Fig. S9a). This increase by 0.335 eV confirmed the affinity of the water molecule with the g-C₃N₄/B₄C₃. The PDOS of g-C₃N₄/ B₄C₃@H₂O system showed a strong hybridization of the CB orbitals of the water molecule near the CB of g-C₃N₄/B₄C₃ (Fig. S9b). The lower CB is occupied by the B2p states, which will likely interact with the water molecules. The band structure and PDOS of B_4C_3/g - $C_3N_4/@H_2O$ are given in Fig. S9 (d, e). The bandgap value in this case is 2.635 eV, which is high in contrast to the bandgap value of $B_4C_3/g-C_3N_4$ (2.459 eV). Also, the PDOS shows a strong coupling in the VB, which further confirmed the adsorption results. These results demonstrate that the efficiency of the B₄C₃/g-C₃N₄ composite for the photocatalytic reactions. The electron density of the g-C₃N₄/B₄C₃@H₂O and B₄C₃/g-C₃N₄/@H₂O is given in Fig. S9c and Fig. S9f respectively. It can be seen that more electron density is populated around (can be described as a strong interaction) the water molecules and $g-C_3N_4$ (Fig. S8f) in contrast to the $B_4C_3@H_2O$ configuration (Fig. S9c). Based on these results, the B_4C_3/g -

C₃N₄ configuration can be proved as a best visible light photocatalyst, with improved light harvesting capability, optimum bandgap value, superior charge separation process, and a strong affinity towards the surface adsorbed water molecules. We further studied the interaction of water molecules with the B_4C_3/g - C_3N_4 heterojunction by increasing the number of water molecules. It was observed that E_{ads} decreases with increasing number of water molecules, while a strong distortion was observed in the g-C₃N₄ layer. The E_{ads} per water molecule is calculated as 1.78 eV, when two water molecules are adsorbed on $B_4C_3/g-C_3N_4$ surface (Fig. S10b). When the number of water molecules is further increased to three, the adsorption energy further decreased to 1.36 eV. The adsorption energy per molecule in the case of six water molecules is calculated as 0.819 eV (Fig. S10f), which suggests that increasing number of water molecules lowers the adsorption enenrgy per water molecule. Despite these variations, the B₄C₃/g-C₃N₄ demonstrate a strong interaction with the water molecules.

Finally, the catalytic activities of B_4C_3 , g- C_3N_4 and B_4C_3/g - C_3N_4 were studied towards the HER. Based on the different chemical environment of B, N, and C atoms, the adsorption of atomic hydrogen will be different. Therefore, the free energy values were calculated for the most favorable sites, which demonstrate the site selective HER activities. The adsorption configurations of a hydrogen atom on isolated monolayer and B_4C_3/g - C_3N_4 heterojunction is presented in Fig. 11. The HER comparison between free energy (ΔG_{H^*}) at different adsorption sites is given in Fig. 12. In the case of pure g-C₃N₄ monolayer, the ΔG_{H^*} is +0.107 eV, +1.158 eV, and +0.108 eV corresponding to site_A, site_B, and site_C, respectively. Thus, it can be inferred that the site_A is the most active site for the HER on pure g-C₃N₄. However, the free energy value is positive, which means that the reaction is a non-spontaneous process. The bond length between N and H (N-H) is recorded as 1.038 Å, while the site_B gives a relatively weak interaction between the C and H atoms. In the case of isolated B₄C₃ monolayer, three adsorption sites were identified, including C and B of the hexagonal ring and B coordinated to three C atoms in the middle of a hexagonal ring. The corresponding ΔG_{H^*} for site_A, B, and C were calculated as +1.34, +0.96, and -0.22 eV. Based on these calculated values the site C is the most active site for the HER reaction. Also, the negative free energy value suggest that the reaction is spontaneous on B₄C₃. In this regard, it

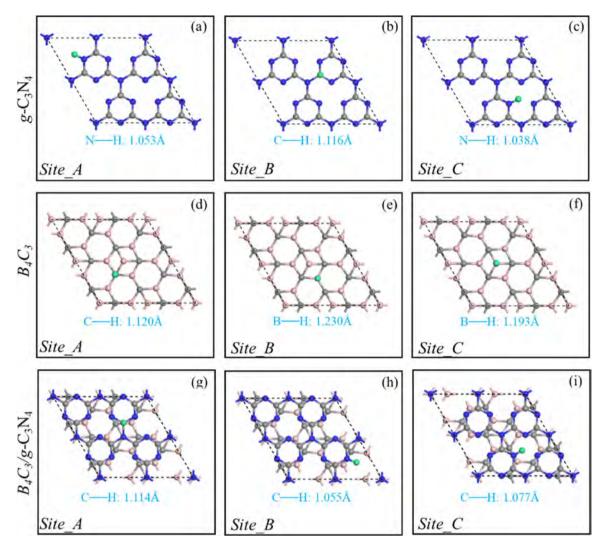


Fig. 11. Different adsorption configurations of H on g-C₃N₄, B₄C₃, and B₄C₃/g-C₃N₄ heterojunctions.

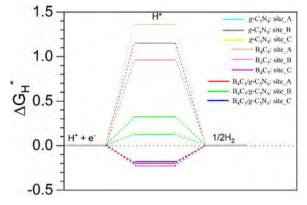


Fig. 12. Calculated site selective free energy diagram for the hydrogen evolution reaction on g-C₃N₄ and B₄C₃ monolayers and B₄C₃/g-C₃N₄ heterojunction at standard conditions (U = 0 relative to the standard hydrogen electrode, pH = 0, and T = 298.15 K).

can be inferred that B_4C_3 will demonstrate good HER activity, in contrast to g-C₃N₄. The HER activity of g-C₃N₄ was significantly improved when combined with B_4C_3 (i.e., B_4C_3/g -C₃N₄ heterojunction). The site selective HER activity suggested that site_C is the most active site for the HER ($\Delta G_{H^*} = -0.10 \text{ eV}$). This value is quite high for the HER in contrast to many other recently reported values [64–66]. The ΔG_{H^*} for

site _A and site_B were calculated as -0.2 eV and +0.32 eV, respectively. The HER activity demonstrated a significant boost than pure g-C₃N₄ and B₄C₃, which suggested that heterojunction formation between B₄C₃ and g-C₃N₄ not only improved the water adsorption but the HER activity. In this study, the constant E_{ZPE} –T Δ S value (0.24 eV) was used, which has been previously used in several studies [43,67,68].

4. Conclusion

Periodic DFT calculations of the $g\text{-}C_3N_4$ and B_4C_3 monolayer and their composites were carried out using different configurations, which included either g- C_3N_4 or B_4C_3 as the top layer. The electronic band structure, PDOS, EDD, and optical properties were simulated. Also, the adsorption of a single water molecule on the optimized composite structures was simulated to study the interaction of a single water molecule. At first, the bandgap values of the composite structures were significantly decreased in contrast to isolated g-C₃N₄ monolayer. Next, the optical absorption edge of g-C₃N₄ was engineered to extend towards the visible region, which will undoubtedly improve the visible light photocatalytic activity. Also, the calculated band edge position of the composite structures further confirmed the suitability of our proposed B₄C₃/g-C₃N₄ heterojunction for the visible light photocatalysts and water splitting reactions. The results suggested that the configuration in which the g-C₃N₄ is grown on the top of the B₄C₃ monolayer exhibited more thermodynamic stability. The effective mass of electron and holes

were significantly improved in B₄C₃/g-C₃N₄ heterojunction compared to isolated B₄C₃ and g-C₃N₄ monolayers, which suggested high charge carrier mobility and charge separation. Also, the adsorption of a single water molecule on the B₄C₃/g-C₃N₄ composite demonstrated a high adsorption energy (2.68 eV) in contrast to the isolated g-C₃N₄ monolayer (1.40 eV). The site selective HER activity suggested that B₄C₃/g-C₃N₄ heterojunction exhibit a better $\Delta G_{H^*} = -0.10 \text{ eV}$, in contrast to isolated B₄C₃ ($\Delta G_{H^*} = -0.22 \text{ eV}$) and g-C₃N₄ ($\Delta G_{H^*} = +0.108 \text{ eV}$) monolayers. Our study suggested, that B₄C₃/g-C₃N₄ could prove an efficient metal free visible light photocatalyst, with an optimum bandgap value and improved charge transfer and separation properties.

CRediT authorship contribution statement

Asad Mahmood: Conceptualization, Methodology, Formal analysis, Data curation, Writing - original draft. Gansheng Shi: Formal analysis, Investigation, Resources. Xiao Wang: Data curation, Formal analysis, Funding acquisition. Xiaofeng Xie: Investigation, Validation, Funding acquisition, Resources, Project administration. Jing Sun: Conceptualization, Methodology, Resources, Funding acquisition, Supervision, Project administration, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors are thankful for the financial support under the CAS President's International Fellowship Initiative (PIFI) program (2018PE0014), Shanghai "Belt and Road" Program for Young Foreign Scientists (17520742600), National Key Research and Development Program of China (2016YFA0203000), Shanghai Sailing Program (18YF1426800), the Scientific Research Program of Science and Technology Commission of Shanghai Municipality (19DZ1202600) and the Innovation Program of Shanghai Institute of Ceramics, Chinese Academy of Sciences.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2020.119310.

References

- [1] M. Negri, L. Francaviglia, D. Dumcenco, M. Bosi, D. Kaplan, V. Swaminathan, G. Salviati, A. Kis, F. Fabbri, I.M.A. Fontcuberta, Quantitative nanoscale absorption mapping: a novel technique to probe optical absorption of two-dimensional materials, Nano Lett. 20 (2020) 567–576.
- [2] D. Jiang, J. Li, C. Xing, Z. Zhang, S. Meng, M. Chen, Two-dimensional CaIn₍₂₎S₍₄₎/g-C₍₃₎N₍₄₎ heterojunction nanocomposite with enhanced visible-light photocatalytic activities: Interfacial engineering and mechanism insight, ACS Appl. Mater. Interfaces 7 (2015) 19234–19242.
- [3] X. Ma, W. Mi, Surface functionalization tailored electronic structure and magnetic properties of two-dimensional CrC₂ monolayers, J. Phys. Chem. C 124 (2020) 3095–3106.
- [4] Y. Zhou, X. Zheng, Generating pure spin current with spin-dependent Seebeck effect in ferromagnetic zigzag graphene nanoribbons, J. Phys. Condens. Matter 31 (2019) 315301.
- [5] H. Zhang, X. Li, X. Meng, S. Zhou, G. Yang, X. Zhou, Isoelectronic analogues of graphene: the BCN monolayers with visible-light absorption and high carrier mobility, J. Phys. Condens. Matter 31 (2019) 125301.
- [6] C.H. Chu, H.C. Lin, C.H. Yeh, Z.Y. Liang, M.Y. Chou, P.W. Chiu, End-bonded metal contacts on WSe₂ field-effect transistors, ACS Nano 13 (2019) 8146–8154.
- [7] Y. Hassan, P.K. Srivastava, B. Singh, M.S. Abbas, F. Ali, W.J. Yoo, C. Lee, Phaseengineered molybdenum telluride/black phosphorus Van der Waals heterojunctions for tunable multivalued logic, ACS Appl. Mater. Interfaces 12 (2020) 14119–14124.
- [8] G. He, H. Ramamoorthy, C.P. Kwan, Y.H. Lee, J. Nathawat, R. Somphonsane,

M. Matsunaga, A. Higuchi, T. Yamanaka, N. Aoki, Y. Gong, X. Zhang, R. Vajtai, P.M. Ajayan, J.P. Bird, Thermally assisted nonvolatile memory in monolayer MoS₂ transistors, Nano Lett. 16 (2016) 6445–6451.

- [9] N. Tian, H. Huang, S. Wang, T. Zhang, X. Du, Y. Zhang, Facet-charge-induced coupling dependent interfacial photocharge separation: a case of BiOI/g-C₃N₄ p-n junction, Appl. Catal. B: Environ. 267 (2020) 118697.
- [10] P. Wen, Y. Sun, H. Li, Z. Liang, H. Wu, J. Zhang, H. Zeng, S.M. Geyer, L. Jiang, A highly active three-dimensional Z-scheme ZnO/Au/g-C₃N₄ photocathode for efficient photoelectrochemical water splitting, Appl. Catal. B: Environ. 263 (2020) 118180.
- [11] D. Qu, J. Liu, X. Miao, M. Han, H. Zhang, Z. Cui, S. Sun, Z. Kang, H. Fan, Z. Sun, Peering into water splitting mechanism of g-C₃N₄-carbon dots metal-free photocatalyst, Appl. Catal. B: Environ. 227 (2018) 418–424.
- [12] J. Liu, E. Hua, High photocatalytic activity of heptazine-based g-C₃N₄/SnS₂ heterojunction and its origin: Insights from hybrid DFT, J. Phys. Chem. C 121 (2017) 25827–25835.
- [13] R.C. Pawar, S. Kang, J.H. Park, J.H. Kim, S. Ahn, C.S. Lee, Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C₃N₄) with highly enhanced photocatalytic activity and stability, Sci. Rep. 6 (2016) 31147.
- [14] W. Wu, J. Xu, X. Tang, P. Xie, X. Liu, J. Xu, H. Zhou, D. Zhang, T. Fan, Two-Dimensional Nanosheets by Rapid and Efficient Microwave Exfoliation of Layered Materials, Chem. Mater. 30 (2018) 5932–5940.
- [15] Y. Che, B. Lu, Q. Qi, H. Chang, J. Zhai, K. Wang, Z. Liu, Bio-inspired Z-scheme g-C₃N₄/Ag₂CrO₄ for efficient visible-light photocatalytic hydrogen generation, Sci. Rep. 8 (2018) 16504.
- [16] R. Kumar, M.A. Barakat, F.A. Alseroury, Oxidized g-C₃N₄/polyaniline nanofiber composite for the selective removal of hexavalent chromium, Sci. Rep. 7 (2017) 12850.
- [17] Z. Zhang, K. Liu, Z. Feng, Y. Bao, B. Dong, Hierarchical sheet-on-sheet ZnIn₂S₄/g-C₃N₄ heterostructure with highly efficient photocatalytic H₂ production based on photoinduced interfacial charge transfer, Sci. Rep. 6 (2016) 19221.
- [18] J. Wang, C. Qin, H. Wang, M. Chu, A. Zada, X. Zhang, J. Li, F. Raziq, Y. Qu, L. Jing, Exceptional photocatalytic activities for CO₂ conversion on Al-O bridged g-C₃N₄/α-Fe₂O₃ Z-scheme nanocomposites and mechanism insight with isotopes, Appl. Catal. B: Environ. 221 (2018) 459–466.
- [19] Y. Luo, B. Deng, Y. Pu, A. Liu, J. Wang, K. Ma, F. Gao, B. Gao, W. Zou, L. Dong, Interfacial coupling effects in g-C₃N₄/SrTiO₃ nanocomposites with enhanced H₂ evolution under visible light irradiation, Appl. Catal. B: Environ. 247 (2019) 1–9.
- [20] L. Chen, Y. Xu, B. Chen, In situ photochemical fabrication of CdS/g-C₃N₄ nanocomposites with high performance for hydrogen evolution under visible light, Appl. Catal. B: Environ. 256 (2019) 117848.
- [21] S. Samanta, R. Srivastava, Thermal catalysis vs. photocatalysis: A case study with FeVO₄/g-C₃N₄ nanocomposites for the efficient activation of aromatic and benzylic C-H bonds to oxygenated products, Appl. Catal. B: Environ. 218 (2017) 621–636.
- [22] D. Xu, B. Cheng, W. Wang, C. Jiang, J. Yu, Ag₂CrO₄/g-C₃N₄/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO₂ reduction activity, Appl. Catal. B: Environ. 231 (2018) 368–380.
- [23] F. Raziq, Y. Qu, M. Humayun, A. Zada, H. Yu, L. Jing, Synthesis of SnO₂/B-P codoped g-C₃N₄ nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO₂ conversion and pollutant degradation, Appl. Catal. B: Environ. 201 (2017) 486–494.
- [24] W. Shan, Y. Hu, Z. Bai, M. Zheng, C. Wei, In situ preparation of g-C₃N₄ /bismuthbased oxide nanocomposites with enhanced photocatalytic activity, Appl. Catal. B: Environ. 188 (2016) 1–12.
- [25] E. Courtade, B. Han, S. Nakhaie, C. Robert, X. Marie, P. Renucci, T. Taniguchi, K. Watanabe, L. Geelhaar, J.M.J. Lopes, B. Urbaszek, Spectrally narrow exciton luminescence from monolayer MoS₂ and MoSe₂ exfoliated onto epitaxially grown hexagonal BN, Appl. Phys. Lett. 113 (2018) 032106.
- [26] M.-Y. Li, C.-H. Chen, Y. Shi, L.-J. Li, Heterostructures based on two-dimensional layered materials and their potential applications, Mater. Today 19 (2016) 322–335.
- [27] Y. Li, X. Wang, H. Huo, Z. Li, J. Shi, A novel binary visible-light-driven photocatalyst type-I CdIn₂S₄/g-C₃N₄ heterojunctions coupling with H₂O₂: Synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis, Colloids Surf. A: Physicochem. Eng. Asp. 587 (2020) 124322.
- [28] D. Kim, C. Shin, J.H. Park, J. Park, T. Kim, Characteristics of a type-II n-MoS₂/p-Ge van der Waals heterojunction, Curr. Appl. Phys. 20 (2020) 802–806.
- [29] T. Paul, D. Das, B.K. Das, S. Sarkar, S. Maiti, K.K. Chattopadhyay, CsPbBrCl₂/g-C₃N₄ type II heterojunction as efficient visible range photocatalyst, J. Hazard. Mater. 380 (2019) 120855.
- [30] Y. Zeng, C.-I. Kuo, C. Hsu, M. Najmzadeh, A. Sachid, R. Kapadia, C. Yeung, E. Chang, C. Hu, A. Javey, Quantum Well InAs/AlSb/GaSb Vertical Tunnel FET With HSQ Mechanical Support, IEEE Trans. Nanotechnol. 14 (2015) 580–584.
- [31] E. Hua, S. Jin, X. Wang, S. Ni, G. Liu, X. Xu, Ultrathin 2D type-II p-n heterojunctions La₂Ti₂O₇/Tn₂S₃ with efficient charge separations and photocatalytic hydrogen evolution under visible light illumination, Appl. Catal. B: Environ. 245 (2019) 733–742.
- [32] H. Zhang, Y. Li, J. Hou, A. Du, Z. Chen, Dirac state in the FeB_2 monolayer with graphene-like boron sheet, Nano Lett. 16 (2016) 6124–6129.
- [33] I.A. Popov, A.I. Boldyrev, Deciphering chemical bonding in a BC₃ honeycomb epitaxial sheet, J. Phys. Chem. C 116 (2012) 3147–3152.
- [34] Pv.Re. Kai Exner, Schleye, Planar hexacoordinate carbon: A viable possibilit, Science 290 (2000) 1937–1939.
- [35] H. Chang, K. Tu, X. Zhang, J. Zhao, X. Zhou, H. Zhang, B₄C₃Monolayer with impressive electronic, optical, and mechanical properties: a potential metal-free photocatalyst for CO₂ reduction under visible light, J. Phys. Chem. C 123 (2019)

A. Mahmood, et al.

25091-25101.

- [36] M.D. Segall, Philip J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter 14 (2002) 2717–2744.
- [37] John P. Perdew, Kieron Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.
- [38] G. Kresse, J. Hafner, Ab initiomolecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558–561.
- [39] S. Grimme, Semiempirical GGA-type density functional constructed with a longrange dispersion correction, J. Comput. Chem. 27 (2006) 1787–1799.
- [40] J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (2003) 8207–8215.
- [41] M. Krack, M. Parrinello, All-electron ab-initio molecular dynamics, J. Chem. Soc. Faraday Trans. 2 (2000) 2105–2112.
- [42] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys. 126 (2007) 014101.
- [43] J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152 (2005) J23–J26.
- [44] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B 108 (2004) 17886–17892.
- [45] Q. Tang, D.-e. Jiang, Mechanism of hydrogen evolution reaction on 1T-MoS₂ from first principles, ACS Catal. 6 (2016) 4953–4961.
- [46] Z. Wu, L. Gao, J. Wang, F. Zhao, L. Fan, D. Hua, S. Japip, J. Xiao, X. Zhan, S.-F. Zhou, G. Zhan, Preparation of glycine mediated graphene oxide/g-C₃N₄ lamellar membranes for nanofiltration, J. Memb. Sci. 601 (2020).
- [47] S.S. Tafreshi, A.Z. Moshfegh, N.H. de Leeuw, Mechanism of photocatalytic reduction of CO₂ by Ag₃PO₄(111)/g-C₃N₄ nanocomposite: a first-principles study, J. Phys. Chem. C 123 (2019) 22191–22201.
- [48] M. Kick, K. Reuter, H. Oberhofer, Intricacies of DFT+U, not only in a numeric atom centered orbital framework, J. Chem. Theory Comput. 15 (2019) 1705–1718.
- [49] J. Liu, B. Cheng, J. Yu, A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C₃N₄/TiO₂ heterostructure, Phys. Chem. Chem. Phys. 18 (2016) 31175–31183.
- [50] J. Wang, Z. Guan, J. Huang, Q. Li, J. Yang, Enhanced photocatalytic mechanism for the hybrid g-C₃N₄/MoS₂ nanocomposite, J. Mater. Chem. A 2 (2014) 7960–7966.
- [51] R. Lu, C. Christianson, A. Kirkeminde, S. Ren, J. Wu, Extraordinary photocurrent harvesting at type-II heterojunction interfaces: toward high detectivity carbon nanotube infrared detectors, Nano Lett. 12 (2012) 6244–6249.
- [52] Torben Schuettfort, Adrian Nish, R.J. Nicholas, Observation of a Type II heterojunction in a highly ordered polymer-carbon nanotube nanohybrid structure, Nano Lett. 9 (2009) 3871–3876.

photodetector with response up to mid-infrared, ACS Photonics 6 (2019) 565–572.[54] H. Ehrenreich, M.H. Cohen, Self-consistent field approach to the many-electron problem, Phys. Rev. 115 (1959) 786–790.

- [55] M. Fox, Optical Properties of Solids, Oxford University Press Great Clarendon Street, Oxford OX2 6DP, 2007.
- [56] Michael R. Hoffmann, Scot T. Martin, Wonyong Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.
- [57] W. Hu, L. Lin, R. Zhang, C. Yang, J. Yang, Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons, J. Am. Chem. Soc. 139 (2017) 15429–15436.
- [58] H.-Y. Liu, C.-L. Yang, M.-S. Wang, X.-G. Ma, Two-dimensional BiP3 with high carrier mobility and moderate band gap for hydrogen generation from water splitting, Appl. Surf. Sci. 501 (2020) 144263.
- [59] Y. Cai, Y. Liu, Y. Xie, Y. Zou, C. Gao, Y. Zhao, S. Liu, H. Xu, J. Shi, S. Guo, C. Sun, Band structure, effective mass, and carrier mobility of few-layer h-AlN under layer and strain engineering, APL Mater. 8 (2020) 021107.
- [60] M. Zhong, W. Zeng, F.-S. Liu, B. Tang, Q.-J. Liu, Optical transparency, carrier mobility, and electrical conductivity of La-based copper layered oxychalcogenides: A density functional theory study, Sol. Energy 204 (2020) 346–353.
- [61] D. Liang, T. Jing, Y. Ma, J. Hao, G. Sun, M. Deng, Photocatalytic properties of g-C₆N₆/g-C₃N₄heterostructure: A theoretical study, J. Phys. Chem. C 120 (2016) 24023–24029.
- [62] H. Zhang, X. Zhang, G. Yang, X. Zhou, Point defect effects on photoelectronic properties of the potential metal-free C₂N photocatalysts: Insight from first-principles computations, J. Phys. Chem. C 122 (2018) 5291–5302.
- [63] W. Lin, X. Xie, X. Wang, Y. Wang, D. Segets, J. Sun, Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO₂ photocatalyst, Chem. Eng. J. 349 (2018) 708–718.
- [64] H.-Y. Liu, C.-L. Yang, M.-S. Wang, X.-G. Ma, Two-dimensional hexaphosphate BiMP₆ (M = Al, Ga, In) with desirable band gaps and ultrahigh carrier mobility for photocatalytic hydrogen evolution, Appl. Surf. Sci. 517 (2020) 146166.
- [65] N. Yao, R. Meng, F. Wu, Z. Fan, G. Cheng, W. Luo, Oxygen-Vacancy-Induced CeO₂/ Co₄N Heterostructures toward Enhanced pH-Universal Hydrogen Evolution Reactions, Appl. Catal. B (2020) 119282.
- [66] N.N. Som, P.K. Jha, Hydrogen evolution reaction of metal di-chalcogenides: ZrS2, ZrSe₂ and Janus ZrSSe, Int. J. Hydrogen Energy (2019), https://doi.org/10.1016/j. ijhydene.2019.09.033.
- [67] S.H. Mir, S. Chakraborty, J. Wärnå, S. Narayan, P.C. Jha, P.K. Jha, R. Ahuja, A comparative study of hydrogen evolution reaction on pseudo-monolayer WS₂ and PtS₂: insights based on the density functional theory, Catal. Sci. Technol. 7 (2017) 687–692.
- [68] Y.-H. Fang, G.-F. Wei, Z.-P. Liu, Catalytic Role of Minority Species and Minority Sites for Electrochemical Hydrogen Evolution on Metals: Surface Charging, Coverage, and Tafel Kinetics, J. Phys. Chem. C 117 (2013) 7669–7680.