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a b s t r a c t

In this paper, we synthesized Y, N co-doped TiO2 nanoparticles via a simple solegel method. The
incorporated yttrium and nitrogen increased the BET surface area and porosity of the nanoparticles, as
the sample 100-300-0.5 reached 105.9 m2/g, which largely improved the dye adsorption ability and
obviously enhanced the Jsc. By optimizing doping amount of TiO2, sample 100-300-0.5, for which the
doping concentration characterized by XPS survey was 0.30% and 0.48% of yttrium and nitrogen,
respectively, showed the best efficiency of 5.41% without any post-treatments on the electrode, 18%
higher than the un-doped sample100-0-0. According to EIS measurements, charge transfer resistance
could decrease to as low as 39.3U in the co-doped samples, which was almost half of the un-doped TiO2.
This work may open up more studies to apply co-doped TiO2 in photovoltaic cells.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, dye-sensitized solar cells (DSSCs), featuring new
dyes, semiconducting materials and electrolytes, have shown great
potential in high efficiency solar energy conversion [1e4]. Different
semiconductors with various morphologies and crystal structures
[5e11] have been fabricated into photoanodes to improve the cell
performance.

As a crucial part of DSSCs, researchers have tried many different
techniques [12e14] to enhance the charge transport for improving
performance, among which doping TiO2 with metal element cat-
ions is a common method. For example, M. J. Robles-Aguila et al.
[15] incorporated Ni2þ into TiO2 by an ultrasonic-assisted solegel
method; F. Q. Huang et al. [16] synthesized Nb5þ doped TiO2
powders through a hydrothermal process, improving the cell per-
formance of ca. 18% compared to the un-doped cell; M. Liu et al. [17]
synthesized Ca2þ doped TiO2 nanorod arrays to form the photo-
anodes of DSSCs. Other metals as Al, Fe, Ga, La, and etc. [18e21] are
also applied to dope the TiO2, tailoring the band gap and electrical
conductivity of the material.
sun@mail.sic.ac.cn (J. Sun).
Additionally, not only limited in metal element cation doping,
but studies with nonmetal anion doping are widely reported as
well. Elements as N, C, F, S [22e25] have been introduced to
modifying the optical properties of TiO2. Ma et al.'s work [26e28]
with N-doped TiO2 based DSSCs have extensively shown great
long term stability and better conversion efficiencies. By
substituting N doped TiO2 for un-doped electrodes, they achieved
higher incident photo-current efficiency (IPCE) and retarded elec-
tron recombination.

However, single doped TiO2 may face several issues. For
example, doping with transitional metals may reduce the thermal
stability of nanoparticles [29], while doping with non-metal anions
may create trap states near valence band that increase the recom-
bination in the cell [30]. Consequently, some researchers synthe-
sized co-doped TiO2 based photocatalysts [31,32] and electrodes of
lithium-ion batteries [33], trying to modify TiO2 by utilizing both
the cation and anion doping. However, up to now, no study has
been taken on using codoped TiO2 as DSSC photoanodes. Herein,
we chose yttrium as the doping cation for its success in enhancing
the charge collection efficiency of DSSCs and perovskite solar cells
[34,35], and together with popularly studied nitrogen as the doping
anion to synthesize yttrium and nitrogen co-doped TiO2 nano-
particles through a simple solegel method using familiar pre-
cursors as urea and yttrium chloride. Then we prepared DSSCs
based on doped TiO2 thin films, to determine the doping effect the
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Fig. 1. Detailed XRD patterns of TiO2 (101).

Fig. 2. Raman spectra of synthesized TiO2 nanoparticles. Detailed Eg modes near
142 cm�1 are shown in the inset.
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structural, electronic properties of pristine TiO2 and the photovol-
taic performances of DSSCs.

2. Material and methods

2.1. Material synthesis

Titanium(IV) butoxide (TBOT, 98%), urea, acetic acid, nitric acid
(65%) and anhydrous ethanol were obtained from Sinopharm.
Yttrium chloride (YCl3, 99.9%) was purchased from Alfa. All re-
agents and solvents were used as received. Nanocrystalline TiO2 co-
doped with nitrogen and yttrium was synthesized through a
modified simple solegel method [35]. A certain amount of YCl3 and
urea were dissolved into 160 ml deionized water (DI water) to form
mixture solution A. Then the mixture solution B of 6.5 g acetic acid
and 31 g TBOT was dropwise added into the mixture solution A
under vigorous stirring. After stirred for another hour till TBOT fully
hydrolyzed, 1 ml nitric acid was added into the suspension and it
was heated to 80 �C for 75 min to form a translucent TiO2 sol. Then
the sol was poured into Teflon autoclave and subjected to gelation
at 180 �C for 6 h. Finally the precipitate was rinsed with DI water
and ethanol, dried in a vacuum oven overnight. The samples were
marked as Ti(a)eN(b)eY(c), where a, b and c stood for nominal
molar ratio of Ti, N and Y added in the precursor solutions. How-
ever, as XPS survey indicated, there was a discrepancy between the
dopants added in the precursors and TiO2 nanoparticles synthe-
sized. The obtained TiO2 nanoparticles were mixed with terpineol,
ethyl cellulose ethanol solution to prepare a TiO2 paste according to
a previous literature [36].

2.2. Assembly of DSSCs

The photoanode was assembled by coating the paste onto the
FTO substrate by doctor-blade and further calcined at 450 �C for
half an hour. Then the photoanode was immersed for 24 h in a
ruthenium dye solution (cis-bis(isothiocyanato)bis(2,20-bipyridyl-
4,40-dicarboxylato)-ruthenium(II) bis-tetrabutylammonium (N-719
dye) that was dissolved in acetonitrile/tert-butanol with a con-
centration of 0.3 mM). The anode was then taken out, rinsed with
acetonitrile and dried. After that, one drop of electrolyte, composed
of 0.1 M lithium iodide (LiI), 0.6 M tetrabutylammonium iodide
(TBAI), 0.05 M iodine (I2), and 0.5 M 4-tert-butylpyridine (tBP)
dissolved in acetonitrile, was deposited onto the electrode. A
sputtered platinum FTO counter electrode was clipped on to form a
photovoltaic cell for further characterization.

2.3. Characterizations

Compositions of the samples were investigated by X-ray
diffraction (XRD, D/max 2550V, Rigaku Tokyo) and Raman spec-
troscopy (DXR Raman Microscope with an excitation length of
532 nm, Thermo Fisher). The morphology was characterized with
field emission electron transmission microscope (FETEM, JEM-
2100F). The UVevis spectra and dye adsorption amount were
recorded by Lamda 950, Perkin Elmer. Photoluminescence emission
spectra were performed by FluoroMax-4 fluorescence spectrom-
eter, using the excitation wavelength of 325 nm. XPS measure-
ments were performed on ESCAlab 250, Thermo Fisher. The
photocurrentevoltage (IeV) curves were recorded by Keithley
2400 m under illumination of 100 mW/cm2 AM 1.5G simulated
sunlight, which was performed by an Oriel-Newport Xe lamp.
Electrochemical impedance spectroscopy (EIS) measurementswere
carried out on a CHI 660D electrochemical workstation and further
fitted by Z-view.
3. Results and discussion

3.1. Morphologies and crystal structures of Y, N co-doped TiO2

powders

The XRD patterns of the synthesized TiO2 nanoparticles are
shown in Fig. S1. As shown in the XRD patterns, the synthesized
TiO2 nanoparticles are crystalline materials. The peak positions and
their respective orientations are consistent with the JCPDS card
No.21-1272, which indicates that the TiO2 nanoparticles own an
anatase structure. Besides, no yttrium oxide peaks in the patterns
could be found, which indicates the negligible amount of impurities
in all of the samples. Furthermore, the detailed XRD patterns of
synthesized TiO2 powders around 25� are shown in Fig. 1. As Fig. 1
illustrates, the (101) diffraction angle of 100-0-0 is 25.42�, while it
is 25.34� for the nitrogen single doped 100-300-0. In particular, in
yttrium and nitrogen co-doped samples, the diffraction angles are
25.31�, 25.31�, 25.33� and 25.32� for 100-300-0.2,100-300-0.5,100-
300-1 and 100-100-0.5, respectively. According to the Bragg
equation nl ¼ 2dsinq, the diffraction angle decrease might indicate
the lattice distortion due to larger ions doping into the crystal



Fig. 3. TEM &HRTEM images of 100-0-0 (a and b), 100-300-0.5 (c and d), respectively.
Inset images are the SAED patterns of the corresponding samples.

Fig. 4. UVevis spectra of doped TiO2 thin film.

Fig. 5. PL intensities of TiO2 nanoparticles at lex ¼ 325 nm.
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(calculated d(101) is 3.501 Å for 100-0-0 and 3.516 Å for doped
samples). Moreover, Raman spectroscopy is another potent method
to investigate the microstructure of oxides. In Fig. 2, Raman spectra
of these six samples are shown. Each spectrum contains one
strongest band near 141 cm�1 and four weaker bands at 194.0,
393.0, 513.3 and 636.6 cm�1, which can be assigned to five Raman-
active modes of anatase phase with symmetries of Eg, Eg, B1g, A1g
and Eg, respectively [37]. Similarly, no yttrium oxide peaks are
found in Raman spectra, which is accordant with the XRD patterns.
As shown in the inset of Fig. 2, the strongest Eg mode of 100-0-0 is
at 144 cm�1, while the Eg peak of N doped one is 142 cm�1.
Furthermore, when the yttrium doping amount increases, i.e., as
the samples 100-300-0.2 to 100-300-1 show, the Eg mode red-
shifts become more obvious. The Eg peak location difference be-
tween 100-0-0 and 100-300-1 almost reached 4 cm�1 in this
experiment. Since the peak location red-shifts can be attributed to
the phonon frequency decrease caused by lattice expansion [38],
we may also infer that yttrium and nitrogen are successfully
incorporated into the crystal.

The morphologies of pure (100-0-0) and Y, N co-doped (100-
300-0.5) samples characterized by TEM and HRTEM are shown in
Fig. 3. Compared to images of pure TiO2 (as shown in Fig. 3a and b),
the size and morphology of Y, N co-doped TiO2 (as shown in Fig. 3c
and d) are retained after being doped with urea and yttrium
chloride. From Fig. 3a and c, both samples comprises agglomerated
nanoparticles, and the grain size of synthesized TiO2 nanoparticles
are estimated to be both ca. 15 nm. And from Fig. 3b and d HRTEM
images, the observed spacing from neighboring crystal fringes is
obtained as ca. 3.5 Å for the (101) plane of anatase crystal, which
corresponds with XRD results.

The change of precursors doping level also affects the surface
properties of the nanoparticles. Measurements of nitrogen
isothermal adsorption/desorption experiments gave information of
the BrunauereEmmetteTeller (BET) surface area of the nano-
particles. Table S1 summarized the BET specific surface area and
pore data of all six samples (Fig. S2 shows the isothermal curve and
pore distribution of 100-300-0.5). The isothermal curve illustrates a
typical type IV isotherm, representing mesoporous structures of
synthesized nanoparticles. According to Table S1, after nitridation
of pure TiO2, the calculated surface area increases from 66.6 m2/g of
100-0-0 to 97.5 m2/g of 100-300-0. Moreover, as the yttrium pre-
cursors are added to co-dope with nitrogen, the highest surface
area reached 121.7 m2/g of 100-300-1, almost twice of the pure one.
As the particle sizes and average pore diameters remained the
same, the enhanced surface area should result from the higher
porosity of the doped samples. A much bigger surface area may
enhance the dye adsorption ability of the nanoparticles, favoring a
higher DSSC performance.

3.2. Optical properties of the Y,N co-doped TiO2 thin films

The TiO2 powder turns into yellow after nitrogen doping, indi-
cating that the optical properties of the samples have changed. As
UVevis spectrometry is often used to examine the optical struc-
tures and effects of dopants on metal oxide thin film, we scan the
visible light absorption spectra herein to demonstrate the effects of
incorporated dopants and the results are shown in Fig. 4. In Fig. 4,
no absorption peak for pure TiO2 is observed above 380 nm.
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However, doped samples all illustrate absorption redshift in the
visible light region. For nitrogen doped only sample 100-300-0, we
can find out the enhanced light absorption in the visible light area,
which forms an obvious broadened peak stretched to 500 nm,
featuring nitrogen doped TiO2. This visible light activity is believed
to be attributed to a new N 2p state close to the valance band
maximum caused by nitrogen doping [39]. In the co-doped system,
as the yttrium doping amount increases, the broadened peak of the
nitrogen doped TiO2 shrinks, i.e., the absorption edge of co-doped
samples shows a small blue shift with the increased amount of
Y3þ. For example, the absorbance of 100-300-0, 100-300-0.2, 100-
300-0.5 and 100-300-1 at the same length of 400 nm is 2.07, 1.42,
1.04 and 0.77, respectively. As a result, powder with more yttrium
doping reveals a paler yellow color.

To understand the efficiency of charge trapping and transfer in
the semiconductor, we performed the photoluminescence (PL)
measurements. The change of PL intensities can reveal the photo-
generated charge-carrier recombination rate in semiconductors.
In Fig. 5, the PL spectra of synthesized nanoparticles are recorded at
lex ¼ 325 nm. As shown in Fig. 5, the PL spectra of TiO2 possess two
major peaks, which are around 410 nm and 465 nm, respectively.
The broadened peak at 410 nm is attributed to the band gap
recombination of TiO2 and the peak at 465 nm is related with free-
excition recombination emission [40,41]. As many previous
Fig. 6. XPS detailed scan of (a) Ti2p and (b) O1s of 100-0-0; (c) T
researches [42,43] illustrate, the PL intensity of 100-300-0 with the
nitrogen doped only sample decreases, which means the charge
recombination is suppressed by incorporated nitrogen. On the
other hand, the PL intensities of codoped samples increase when
more yttrium is doped. This indicates thatmore defect sites, namely
oxygen vacancies are introduced by yttrium doping, which serve as
recombination centers [44]. Further analyses are discussed in the
following XPS measurements.

3.3. Electronic structures of Y, N co-doped TiO2 thin films

To probe the electronic structure and chemical environment of
Y,N co-doped TiO2, XPS surveys are investigated. For sample 100-
100-0.5, the concentration of doped Y and N are confirmed to be
0.30% and 0.48% by XPS survey scan (see Fig. S3), respectively. All
four elemental regions given by detail scan, the Ti 2p region around
460 eV (Fig. 6a and c), O1s region around 532 eV (Fig. 6b and d), Y
3d region around 160 eV (Fig. 6e) and N 1s region around 400 eV
(Fig. 6f), are shown in Fig. 6, respectively.

In particular, the XPS detail scans are fitted with nonlinear
GaussianeLorentzian peak shapes. In Fig. 6e, the two peaks at
158.1 eV and 160.2 eV are assigned to 3d5/2 and 3d3/2 states of Y3þ,
which indicates the yttrium doping into the TiO2 lattice. The XPS
pattern of N 1s state shown in Fig. 6f indicates two peaks at about
i2p, (d) O1s, (e) Y3d and (f) N1s of 100-100-0.5, respectively.



Fig. 7. Photocurrent-voltage characteristics of DSSCs assembled by doped TiO2

electrodes.
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397.9 and 400.4 eV, which lie in the range of 396e404 eV observed
by other authors [45,46]. According to previous researches, the
peak at around 400 eV refers to chemically absorbed g-N2 [33]. But
other peaks are considered to be related to the preparation method
and chemical environment surrounded. For example, Burda et al.
[47] indicated that, when nitrogen substitutes for the oxygen in the
initial OeTieO structure, the electron density around N is reduced,
and the N 1s binding energy in an OeTieN is higher than that in a
NeTieN environment. Di Valentin et al. [48] used DFTcalculation to
clarify the binding energy of substitutional and interstitial N atom
in TiO2 matrix. In this case, the samples are synthesized via a sol-
egel route, we regard the peak at 397.9 eV as an OeTieN structure.
As the result of incorporated yttrium and nitrogen, the Ti 2p
spectrum of co-doped sample differs from the pure one. In Fig. 6c,
the peak of Ti 2p3/2 state in 100-100-0.5 slightly decreases for
0.13 eV after doping. Such decrease in Ti 2p binding energy can be
due to the incorporated N.With the formation of OeTieN bond, the
oxygen in TiO2 is substituted by excess nitrogen. Therefore, the
electron density around Ti atom increases, because the electro-
negativity of nitrogen is lower than oxygen [49]. Consequently, the
binding energy of Ti decreases.

As shown in Fig 5. (b) and (d), the O1s core peak position shifts
from529.8 eV of 100-0-0 to 530.0 eV of 100-100-0.5, indicating that
the chemical environment of this element has been changed [50].
Furthermore, oxygen 1s peaks can be de-convoluted into three
peaks, namely O1, O2 and O3 [51,52]. The O1 peak at 530 eV refers
to the oxygen bounded to Ti. The O2 peak at 531 eV refers to the
oxygen deficient regions within thematrix of TiO2. And the O3 peak
is usually attributed to the chemisorbed species on the TiO2 surface.
As the peak data listed in Table 1 show, the O2 peak area, i.e. the
defect level peak of oxygen, increased from 9.9% to 15.8% in the
doped sample. Since the substitutional doping of yttrium into the
TiO2 lattice is a p-type doping, the increment of oxygen vacancies
are supposed to keep the charge balance in the sample. The O1s
scan of co-doped TiO2 confirms our PL measurements that more
oxygen vacancies are generated after doping.
3.4. Photovoltaic performances of DSSCs

The photovoltaic performances based on Y, N co-doped TiO2 and
pure TiO2 are shown in Fig. 7 and Table 2. The co-doped DSSCs
achieve improvements in light-to-electricity conversion effi-
ciencies compared with traditional DSSCs fabricated by un-doped
TiO2 nanoparticles. In short, the sample 100-300-0.5 obtains
5.41% efficiency without any other post-treatment like dipping in
the TiCl4 solution, 18% higher than the pure TiO2 electrodes.
Compared to the 100-0-0 cell, although we observe that the doped
ones have a smaller fill factor (FF), the enhancement of open circuit
voltage (Voc) and short circuit current density (Jsc) enables the
doped cells reaching a better cell performance.

The increment of dye adsorption amount of the doped TiO2
should be mainly responsible for enhancement of Jsc. To determine
the dye adsorption amount, the NaOH-ethanol solutionwas used to
desorb the dye loaded on the photoanodes and the absorbance of
the N719 desorption solution at 520 nmwere used to determine the
Table 1
Summary of peak positions and areas of O1s detailed scan of 100-0-0 and 100-100-0.5

Peak name 100-0-0

Peak position (eV) Peak area

O1 529.8 89.9
O2 531.0 9.9
O3 531.9 0.2
adsorption amount. As Table 2 summarizes, the dye adsorption
amount increases in the nitrogen doped sample 100-300-0, which
is 1.32 � 10�7 mol/cm2, 15.7% enhancement than the un-doped
electrode; Furthermore, when yttrium doping concentration in-
creases in the co-doped samples, the adsorption amount further
increases. It increased to 2.19 � 10�7 mol/cm2 in the co-doped 100-
300-1 sample, which almost doubled after doping. According to
BET measurements results, the BET surface area suggested that the
co-doped nanoparticles own larger surface areas, which contribute
to the enhanced dye adsorption amount. Additionally, Zeta poten-
tials of the nanoparticles were also measured and listed in Table S1.
The results show that the nanoparticles are negatively charged at
pH 7, and zeta potential of the nitrogen doped sample is 2 mV
higher than the un-doped one, which show same trends with
previous research [53]. Furthermore, the charge of Y, N co-doped
samples are about 3e8 mV smaller than nitrogen doped sample.
It is known that TiO2 exhibits amphoteric properties, because the
surface TieOH structure can act as both basic and acid sites. When
yttrium is also doped in the lattice, as the electronegativity of
yttrium (1.22) is smaller than titanium (1.54), the YeOH bond
should act as a more basic site than TieOH, which also contributes
to the increment of zeta potential [54]. As N719 dye is negatively
charged as well with acidic carboxyl groups, the doped samples
with fewer negative charges are believed to repel N719 to a smaller
extent, thus facilitating higher dye loading ability. As a result, the
highest Jsc occurred in 100-300-0.5, which reached 10.76 mA/cm2.

In addition, although some former research papers indicated
that nitrogen doping could generate sub-band near valence band
maximum, other than changing the conduction band minimum
[55] (approximately the quasi-Fermi level) of TiO2 and influencing
the Voc, other perspectives, like Dai et al.'s [56] point out that, the
flat band potential of their nitrogen doped TiO2 electrode nega-
tively shifted by 60e100 mV, which caused Voc increment in the
100-100-0.5

(%) Peak position (eV) Peak area (%)

530.0 79.7
530.8 15.8
532.2 4.5



Table 2
Summary of detailed parameters of doped DSSCs.

Samples Voc (V) Jsc (mA/cm2) FF (%) EFF (%) Dye adsorption amount ( � 10�7 mol/cm2)

100-0-0 0.718 8.52 74.6 4.58 1.14
100-300-0 0.769 8.37 71.6 4.61 1.32
100-300-0.2 0.745 10.50 64.5 5.05 1.69
100-300-0.5 0.735 10.76 68.4 5.41 1.69
100-300-1 0.769 10.05 69.4 5.36 2.19
100-100-0.5 0.729 10.88 66.8 5.30 1.70

Table 3
Summary of fitted EIS results of doped DSSCs.

Samples Rs (U) Rt (U) tn (ms)

100-0-0 24.6 74.2 50.3
100-100-0.5 26.1 43.5 73.9
100-300-0 34.7 43.8 61.0
100-300-0.5 26.3 39.3 73.9
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cells. In this experiment, we find out that with nitrogen doping, the
Voc of DSSCs has increased about 20e40 mV, and the Voc is higher in
the samples with more nitrogen doped (0.735 V for 100-300-0.5
and 0.729 V for 100-100-0.5). Due to the complexity nature of ni-
trogen doping discussed above in section 3.3, we suggest that the
differences may come from the different synthesis route, as the
nitrogen binding energies and chemical states in TiO2 varies from
the preparation methods.

In the Y, N co-doped system, althoughwe sawa slightly decrease
of Voc comparedwith N single doped, the Jsc increased formore than
20% compared with the single doped one, which could compensate
for the decline of Voc. The performances of DSSCs correspond well
with PL measurements results that the nitrogen doped only TiO2
have lower charge recombination than the co-doped samples.
Although more severe recombination happens in the co-doped
electrodes, the better dye adsorption ability of co-doped elec-
trodes could transfer much more photo-generated electrons, thus
the loss of Voc is compensated by higher Jsc. As optimizing the co-
doping level of nitrogen and yttrium, the cell reaches 5.41% of
100-300-0.5, about 18% higher than the pure 100-0-0 without any
further post-treatment.
3.5. Electrochemical analysis of DSSCs

To further understand the effects of dopants on the TiO2 elec-
trodes and recombination in the cells, the EIS spectra of DSSCs
fabricated by pure and doped TiO2 based cell were measured in the
condition of dark, open-circuit bias. And the Nyquist and Bode
plots, the fitted parameters are shown in Fig. 8 and Table 3,
respectively.

Typically, in the frequency range of this experiment
(0.1e10 kHz), there are two semicircles in the Nyquist plots. The
semicircle in the higher frequency zone refers to the charge transfer
resistance at counter electrode, whereas another semicircle in the
intermediate frequency zone refers to the charge transport
Fig. 8. EIS curves of DSSCs based on doped TiO2 electrodes: (a) is the Nyq
resistance at the TiO2/electrolyte interface (Rt). The decreased
charge transport resistance meant restrained recombination in the
cell. As Rt in Table 3 and semicircles in the Fig. 8a depicted, the
doped samples all possessed ca. 40U charge transport resistance,
which was much smaller than the pure sample (74.2U). The sup-
pressed Rt is mainly due to the enhanced dye loading amount in the
doped samples. Besides, the intersection of curvewith Z0-axis is the
cell's series resistance (Rs), which consists of sheet resistance of the
FTO glass and contact resistance [57]. However, we saw a higher
series resistance on the nitrogen doped sample 100-300-0, which
should contribute to the nitrogen introduced into TiO2 that increase
the powder resistance [26].

Moreover, from the Bode plots in Fig. 8b, two time constants are
shown, and electron life time tn can be calculated by position of the
low frequency peak through equation (1) [58]:

tn ¼ 1=2pf (1)

where f means the frequency of superimposed ac voltage. The tn in
co-doped sample 100-300-0.5 was 73.9 ms, much longer than that
in the un-doped one of 50.3 ms.

Both the lower charge transfer resistance and longer electron
life time illustrates the suppressed charge recombination. In this
experiment, as the excess elements are slightly doped into the TiO2
nanoparticles, the charge distribution in the particle is less than a
few meV [59] and electron transport is dominated by diffusion in
uist plot with the inset of equivalent circuit and (b) is the Bode plot.
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the mesoporous thin film. In other words, as Gregg et al. [60]
pointed out previously, in the mesoporous TiO2 thin film system,
the surface charge recombination behavior strongly related to the
Helmholtz layer capacitance of the porous thin film and electrolyte
interface, which is linearly dependent on the effective surface area
of the TiO2 film. As the doped nitrogen and yttrium increased the
surface area of the nanoparticles, the enhanced charge transfer
behavior is expected in the co-doped TiO2 mesoporous electrode.
Hence, the EIS results mentioned above confirm the better per-
formance of Y, N co-doped electrodes.

4. Conclusions

In summary, we used a facile solegel process to synthesize
yttrium and nitrogen co-doped TiO2 nanoparticles. Compared with
pure TiO2, doping causes Eg Raman vibration mode redshifted for
ca. 2e4 cm�1 and broadening the light absorbance into visible light
area. As incorporating yttrium with nitrogen, the BET surface area
was further increased, which enhanced the dye uptake of the
electrode and increased the Jsc. By tuning an optimized amount of
doping concentration, a best light-to-electricity conversion effi-
ciency of 5.41% was obtained in sample 100-300-0.5 without post-
treatment on photoanode, which was 18% higher compared with
pure TiO2 electrode. As the EIS measurements indicated, the syn-
ergistic effect of yttrium and nitrogen co-doping TiO2 suppressed
the charge recombination in the cell. Therefore, the synthesized co-
doped TiO2 via a simple solegel method could be used as high
performance photoanode for DSSC, which provides an example for
potential use of other cation and anion co-doped TiO2 in DSSCs.
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