Journal of Materials Chemistry A

PAPER

Cite this: J. Mater. Chem. A, 2013, 1, 7154

Received 13th January 2013 Accepted 5th April 2013 DOI: 10.1039/c3ta00183k

www.rsc.org/MaterialsA

1 Introduction

Rechargeable LIBs as an important kind of power source have been greatly used for popular consumer electronics. They are also considered as the most promising batteries for hybrid electric vehicles.^{1,2} In order to meet the increasing demand for higher reversible capacities, metal oxides, such as SnO₂, Fe₂O₃, Fe₃O₄, Co₃O₄ and Mn₃O₄,³⁻⁷ are widely studied for their higher reversible capacity than commercial graphite (372 mA h g^{-1}). Among them α -Fe₂O₃ has the highest theoretical capacity of 1005 mA h g⁻¹. Moreover, its low cost, eco-friendliness and elemental abundance have attracted considerable attention.8,9 However, the severe aggregation and huge volume change of α -Fe₂O₃ particles during the Li insertion/extraction process may cause the pulverization of the electrodes, leading to poor cycling performance.¹⁰ Recently, α -Fe₂O₃ materials with various nanostructures, such as nanocubes, nanocapsules, nanorods and so on,^{8,11,12} have been employed to improve the reversible capacity and cycling performance. For example, Koo et al.13 designed different Fe2O3 morphologies and studied the relationship between the morphology and electrical properties. They showed that hollow Fe₂O₃ nanoparticles could reach up to 1228 mA h g^{-1} , however, the reversible capacity reduced to about 200 mA h g^{-1} after cycling 15 times. Chen *et al.*¹⁴ demonstrated a facile

Synthesis of α -Fe₂O₃ nanoparticles from Fe(OH)₃ sol and their composite with reduced graphene oxide for lithium ion batteries[†]

Meng Du, Chaohe Xu, Jing Sun* and Lian Gao

 α -Fe₂O₃/reduced graphene oxide (α -Fe₂O₃/RGO) composite has been synthesized by a facile hydrothermal method. Fe(OH)₃ sol is creatively employed as the precursor and no nucleating agent is employed to help Fe³⁺ change to Fe(OH)₃. In the hydrothermal process, Fe(OH)₃ sol transforms to α -Fe₂O₃ particles and GO becomes RGO with hydrazine hydrate. Composites with different ratios between α -Fe₂O₃ and RGO for comparison are investigated as anode LIB materials. Among the composites, the α -Fe₂O₃/RGO containing 73% α -Fe₂O₃ exhibits the highest reversible specific capacity of ~950 mA h g⁻¹ after 70 cycles at a current density of 100 mA g⁻¹. When the current density is 800 mA g⁻¹, the capacity still remains as ~700 mA h g⁻¹, showing superior rate capability. The significant electrochemical property improvements of α -Fe₂O₃/RGO can be attributed to the uniform α -Fe₂O₃ nanoparticles (20–30 nm) and the RGO substrate, which provides high electrical conductivity and stability.

top-down approach to fabricate uniform single-crystal α -Fe₂O₃ nanodiscs, which showed 662 mA h g⁻¹ at a current rate of 200 mA g⁻¹ after 100 charge–discharge cycles. Another strategy to enhance the cycling ability was by coating carbon on metal oxide,¹⁵ while the conductivity of the composites did not improve a lot and it just delayed the pulverization of the metal oxide anodes to some degree. Over extended cycling, poor capacity retention would still appear unfortunately.

Graphene, with its high conductivity and large specific surface area, as well as flexibility and chemical stability, is an excellent substrate to hybridise with active nanomaterials for energy applications.^{16,17} More and more metal oxide/graphene composites are synthesized as enhanced LIB anodes.18,19 In addition, graphene as an outstanding host conductor could make up for the weak electrical conductivity of metal oxides. Besides, the flexible thin graphene film will absorb the stress produced in the Li insertion/extraction process. The metal oxide/graphene hybrids can not only keep a high reversible capacity, but also reveal enhanced cycling performance.20-22 Bai et al.²³ utilized a facile solvothermal method to synthesize Fe₂O₃ nanospindles with crumpled RGO nanosheets, revealing a high reversible capacity of 969 mA h g^{-1} after 100 cycles at a current density of 100 mA g⁻¹. Zhu *et al.*²⁴ prepared an α -Fe₂O₃/RGO composite using a homogeneous precipitation of FeCl₃ in a suspension of GO platelets with urea, with subsequent reduction of the GO with hydrazine under microwave irradiation to yield RGO platelets decorated with Fe2O3 nanoparticles. Such a composite reached as high as 1027 mA h g⁻¹ after 50 cycles at a current density of 100 mA g^{-1} .

Herein, $Fe(OH)_3$ sol is employed to synthesize α -Fe₂O₃ nanoparticles and further combine with RGO as an anode

View Article Online View Journal | View Issue

The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P.R. China. E-mail: jingsun@mail.sic.ac.cn; Fax: +86-21-52413122; Tel: +86-21-52414301

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c3ta00183k

material for high-performance LIBs. In previous work, the source of the metal oxides was metal salt solutions and the morphology of the final product was hard to control. Under the circumstances the particles of the composites often grew to a large size.²⁵ However, in this work, the Fe(OH)₃ sol has a uniform size of 4-5 nm and excellent dispersity, which ensures that the final α-Fe₂O₃ nanoparticles have a small and uniform size. The excellent uniformity and dispersity of α-Fe₂O₃ particles on RGO can be attributed to the characteristics of sol. Composites with different volume ratios between α-Fe₂O₃ and RGO have been prepared. As a result, we find that when the content of α -Fe₂O₃ reaches 73%, the composite shows the best reversible specific capacity of \sim 950 mA h g⁻¹ after 70 cycles at a current density of 100 mA g⁻¹. In addition, the composite reveals an improved rate capability and when the current density is 800 mA g^{-1} , the capacity still remains \sim 700 mA h g^{-1} . To the best of our knowledge, this is the first time that sol has been used to synthesize a metal oxide/graphene composite. The strategy presents a promising approach for the synthesis of high quality anode materials of LIBs.

2 Experimental section

2.1 Preparation of the α -Fe₂O₃/RGO composite

Preparation of the Fe(OH)₃ **sol.** 6.5 g FeCl₃ was dissolved in 20 mL distilled water to get 2 M FeCl₃ solution. Then, 0.5 mL of the solution was dropped into 50 mL boiling distilled water. Finally, the water was kept boiling for several minutes to obtain $Fe(OH)_3$ sol.

Preparation of the α-Fe₂O₃/RGO composite. GO was prepared by a modified Hummers method.26,27 In a typical synthesis, GO solution (1 mg mL^{-1}) was mixed with Fe(OH)₃ sol with a volume ratio of 2:1. In the process, $Fe(OH)_3$ sol was added into the GO solution dropwise, followed by stirring for 30 min. Next, hydrazine hydrate (85%) was added into the mixture and then after ultrasonication for 30 min, the solution was transferred into a Teflon-lined autoclave and heated at 150 °C for 6 h. Finally, the resulting composites were washed with deionized water several times, and then dried in a vacuum oven at 60 °C for 10 h. The volume ratios between GO solution (1 mg mL^{-1}) and Fe(OH)₃ sol were changed to 4:1 and 1:1 to synthesize the other two α-Fe₂O₃/RGO composites for comparison. According to the TG result of Fig. S1,[†] three kinds of α -Fe₂O₃/RGO composites were labeled as 33% α-Fe₂O₃/RGO, 73% α -Fe₂O₃/RGO and 81% α -Fe₂O₃/RGO, respectively, based on the content of α -Fe₂O₃ in the composites. Pure α -Fe₂O₃ particles without RGO were also prepared as a control in the same procedure.

2.2 Materials characterization

The phase identification of the three α -Fe₂O₃/RGO composites and α -Fe₂O₃ particles were performed with powder X-ray diffraction pattern (XRD with Cu K α irradiation). The zeta potential was measured by the tester (Zetaplus) in pure water. Morphological observation was carried out using a transmission electron microscope (TEM, JEM-2100F at 200 kV). Thermogravimetry (TG) analysis was performed by using a STA409/PC simultaneous thermal analyzer (Netzsch, Germany) in air with a temperature range of 50–750 °C. The cyclic voltammetry (CV) data was taken on a PARSTAT 2273 Electrochemical workstation in the range of 3–0 eV. The Nyquist plots were collected on the same workstation.

2.3 Electrochemical measurements

The electrochemical experiments of the three α -Fe₂O₃/RGO composites and pure α -Fe₂O₃ were performed using CR 2025 type coin cells. The test electrodes were prepared by mixing the active materials, acetylene black, and polyvinylidene fluoride (PVDF) binder in a weight ratio of 80 : 10 : 10. After that the mixtures were dissolved in *N*-methyl-2-pyrrolidone (NMP). The electrolyte used was 1 M LiPF₆ in a 50 : 50 weight ratio ethylene carbonate (EC) : dimethyl carbonate (DMC) solvent. The cells were assembled in an argon-filled glovebox and galvanostatically discharged and charged using a CT 2001 battery tester.

3 Results and discussion

As shown in Table 1, $Fe(OH)_3$ sol has a positive charge (11.28 mV of Zeta potential) due to its adsorption of Fe^{3+} cations, while the GO solution exhibits a negative charge (-35.56 mV of Zeta potential). When the two mix together, the $Fe(OH)_3$ particles and GO combine with each other under an attractive force. As a result, the zeta potential of the $Fe(OH)_3/GO$ hybrid is 1.31 mV.

Fig. 1 exhibits the synthesis process of the composite. The $Fe(OH)_3$ sol is synthesized without a nucleating agent, leading to a small particle size of about 4–5 nm. After that, it combines with the GO solution. During the hydrothermal process, GO is converted into RGO^{28} and $Fe(OH)_3$ is transformed into α -Fe₂O₃ particles *in situ* with small particle sizes of 20–30 nm. The huge specific surface area of RGO makes it quite easy to trap Fe_2O_3 nanoparticles²⁹ and they will combine tightly with the help of van der Waals forces.

Comparing the XRD patterns (Fig. 2) of GO, commercial α -Fe₂O₃ particles and three α -Fe₂O₃/RGO composites, shows the α -Fe₂O₃ particles in the composites are well crystallized, which agrees well with (JCPDS 33-0664).^{30,31} GO has been converted to RGO in the hydrothermal process.²⁸ However, the peak of graphene at \sim 25° almost overlaps with the main peak of α -Fe₂O₃ (012).⁵

Fig. 3 shows the TEM images of the Fe(OH)₃ sol, Fe(OH)₃/GO, α -Fe₂O₃ particles and 73% α -Fe₂O₃/RGO composite. The particle size of the Fe(OH)₃ sol is 4–5 nm as shown in Fig. 3a. When the particles combine with the GO, they lay uniformly on the GO

Table 1 The zeta potentials of GO, $Fe(OH)_3$ sol and $Fe(OH)_3/GO$				
Sample	1 st	2 nd	3 rd	Average result
	result (mV)	result (mV)	result (mV)	(mV)
GO	-39.16	-31.34	-36.19	-35.56
Fe(OH) ₃ sol	12.35	10.04	11.44	11.28
Fe(OH) ₃ /GO	1.33	0.47	2.12	1.31

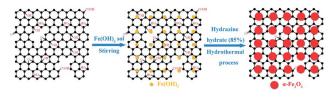


Fig. 1 Schematic diagram for the growth process of the $\alpha\text{-}\text{Fe}_2\text{O}_3/\text{RGO}$ composite.

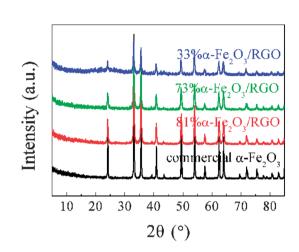


Fig. 2 XRD patterns of α -Fe₂O₃ particles and three α -Fe₂O₃/RGO composites with different ratios of α -Fe₂O₃ and RGO.

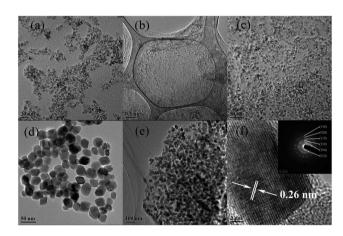


Fig. 3 TEM images of (a) Fe(OH)₃ particles, (b and c) Fe(OH)₃/GO particles (d) α -Fe₂O₃ particles, (e) 73% α -Fe₂O₃/RGO composite and HRTEM image of (f) 73% α -Fe₂O₃/RGO composite. (Inset) Selected area electron diffraction (SAED) pattern for the 73% α -Fe₂O₃/RGO composite.

layers and the particle size remains unchanged (Fig. 3b and c). The separated α -Fe₂O₃ particles for comparison are shown in Fig. 3d, and the size of the particles is 20–30 nm which remains the same when they combine with RGO. In the 33% α -Fe₂O₃/RGO composite, there are not enough α -Fe₂O₃ particles to fully cover the surface of the RGO (Fig. S2c and d†), as a result, the used ratio of graphene is quite low. The α -Fe₂O₃ particles of the 73% α -Fe₂O₃/RGO composite uniformly decorate the RGO (Fig. 3d). However, in the 81% α -Fe₂O₃/RGO composite there are

too many α -Fe₂O₃ particles, and some of them cannot even combine with the graphene (Fig. S2a and b†) and the extra particles group together. So, the 73% α -Fe₂O₃/RGO composite is appropriate for the α -Fe₂O₃ particles to disperse on RGO. Fig. 3f indicates that a lattice spacing of 0.26 nm for the (110) planes clearly identifies the α -Fe₂O₃ particles.³⁰ The corresponding SAED pattern in the inset figure shows the polycrystallinity of the α -Fe₂O₃ structure.³¹

The cyclic voltammetry (CV) curves of the 73% α -Fe₂O₃/RGO are shown in Fig. 4a. In the first cycle, two cathodic peaks around 0.6 V and 1.6 V represent the gradual reduction of Fe³⁺ to Fe⁰ by lithium,³² corresponding to the conversion reaction:^{30,33}

$$Fe_2O_3 + 6Li^+ + 6e^- \rightarrow 2Fe + 3Li_2O.$$

Meanwhile, the anodic peak presented at 1.8 V represents the oxydic reaction from Fe⁰ to Fe³⁺. The reduction peak shifts to 0.7 V in the second cycle because of the irreversible phase transformation in the first cycle which resulted from the decomposition of electrolyte and formation of solid electrolyte interface (SEI).³⁴ Such an SEI layer usually happens in the LIB anodes in the first cycle.^{35,36} After the second cycle, the intensity of the cathodic and anodic peaks remains almost the same, which indicates that the capacity remained unchanged. The cathodic and anodic peaks of the pure Fe₂O₃ (Fig. 4b) appear at 0.6 V and 1.6 V respectively. However the low capacity of the pure Fe₂O₃ makes the peaks inconspicuous. Fe₂O₃ without RGO exhibits a decaying capacity. From the second cycle to the fifth cycle, the area of the curve decreases obviously, indicating the loss of the capacity.

Fig. 5 shows the Nyquist plots of the cells with pure Fe_2O_3 and three α -Fe₂O₃/RGO composites as anodes at a discharge potential of 0.1 V. It is usually considered that the chargetransfer resistance can be signified by the semicircle in the medium-frequency region.³⁷ Although the materials are combined with carbon black (as a conductive additive), it is obvious that the existence of RGO improves the conductivity of pure Fe₂O₃ a lot. The excellent conductivity of the three α -Fe₂O₃/ RGO composites can produce long cycle lifetimes at high rate current density.

The charge–discharge curves of 73% α -Fe₂O₃/RGO at a current density of 100 mA g⁻¹ are revealed in Fig. 6a. The initial discharge and charge capacities of the composite are 1578 and 1095 mA h g⁻¹, respectively, resulting in the first coulombic



Fig. 4 Cyclic voltammograms of (a) 73% α -Fe₂O₃/RGO and (b) pure α -Fe₂O₃ for the first, second, and fifth cycles at a scan rate of 0.5 mV s⁻¹ with a voltage window from 3 to 0 V.

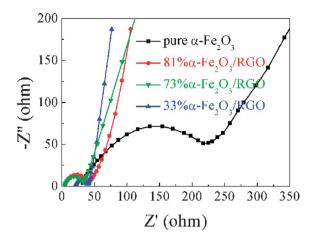
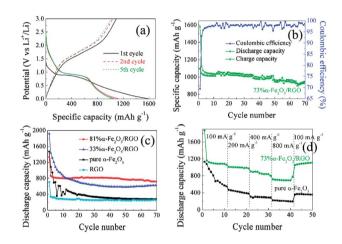



Fig. 5 Nyquist plots of pure α -Fe₂O₃ and three α -Fe₂O₃/RGO composites with different ratios between α -Fe₂O₃ and RGO at a discharge potential of 0.1 V (vs. Li/Li⁺) from 100 kHz to10 mHz.

Fig. 6 (a) Lithium insertion/extraction properties of 73% α -Fe₂O₃/RGO. (b) The coulombic efficiency and the cycling performance of 73% α -Fe₂O₃/RGO at a current density of 100 mA g⁻¹. (c) The cycling performance of pure RGO, α -Fe₂O₃, 81% α -Fe₂O₃/RGO and 33% α -Fe₂O₃/RGO at a current density of 100 mA g⁻¹. (d) The discharge performance of α -Fe₂O₃ and 73% α -Fe₂O₃/RGO at various current rates.

efficiency of \sim 69%. The first discharge curve at \sim 0.86 V can be attributed to the forming of SEI layers on the graphene surface. After the first cycle, the coulombic efficiency of 73% α -Fe₂O₃/ RGO remains above 97%. Fig. 6b shows the cycling performance of 73% α -Fe₂O₃/RGO at 100 mA g⁻¹. After 70 cycles, 73% α - Fe_2O_3/RGO can deliver a reversible capacity of ~950 mA h g⁻¹. The RGO, pure α-Fe₂O₃ particles, 81% α-Fe₂O₃/RGO and 33% α- Fe_2O_3/RGO for comparison show only ~200 mA h g⁻¹, ~250 mA h g⁻¹, \sim 600 mA h g⁻¹ and \sim 750 mA h g⁻¹, respectively at a current density of 100 mA g^{-1} (Fig. 6c). We reach the conclusion that when the content of α -Fe₂O₃ is 73%, the specific capacity reaches its highest value. Fig. 6d shows the rate capability of α -Fe₂O₃ and 73% α-Fe₂O₃/RGO at different current densities, the specific capacity of 73% α -Fe₂O₃/RGO exceeds that of α -Fe₂O₃ materials. At a current density of 800 mA g^{-1} , the dischargecharge capacity of 73% α -Fe₂O₃/RGO is as high as \sim 700 mA h

g⁻¹, which is much higher than that of α -Fe₂O₃ particles (~200 mA h g⁻¹). As it is known, the conductivity of anode materials plays an important role in electron transmission, especially at high rate current density. By hybridizing with RGO, the impedance of the α -Fe₂O₃/RGO composite (~30 Ω) decreases by one order of magnitude compared to the pure α -Fe₂O₃ particles (~300 Ω). In the charge process, lithium ions diffuse into the anode materials and the higher conductivity facilitates faster ion diffusion, leading to a higher specific capacity. When lithium ions insert into the anode materials, the volume will expand to some degree. The smaller size of the α -Fe₂O₃ particles will tolerate the volume expanding and achieve a higher cycling stability. From Fig. S3a and b† we can see that after cycling 70 times, the α -Fe₂O₃ particles grow slightly to ~40 nm and keep the primary dispersibility.

4 Conclusion

In summary, α -Fe₂O₃/RGO has been synthesized as an anode material for LIBs by a two-step process, the first is the preparation of the Fe(OH)₃ sol and then a hydrothermal procedure to synthesize the α -Fe₂O₃/RGO composite. The cycling performance indicates that at 100 mA h g^{-1} , the 73% α -Fe₂O₃/RGO composite can deliver a higher reversible capacity of ~950 mA h g^{-1} after 70 cycles relative to the other two α -Fe₂O₃/RGO composites, notably higher than that of α -Fe₂O₃ materials. Even at 800 mA h g⁻¹, the 73% α-Fe₂O₃/RGO composite maintains a reversible capacity of \sim 700 mA h g⁻¹. When RGO is introduced to the composite, the reversible capacity is seen to be markedly enhanced. The reasons of the enhancement can mainly be ascribed to two aspects. Firstly, the α-Fe₂O₃/RGO composite with RGO increases the conductivity of the hybrid a lot. Secondly, the small size of the α -Fe₂O₃ particles of 20–30 nm can tolerate the volume expanding and achieve a higher cycling stability. The relationship between the content of RGO in the composites and the reversible capacity is also discussed. We find that when the content of α -Fe₂O₃ reaches 73%, the best reversible capacity is achieved.

Acknowledgements

This work was supported by the National Basic Research Program of China (2012CB932303) and the National Natural Science Foundation of China (Grant no. 51172261).

Notes and references

- 1 M. Armand and J. M. Tarascon, Nature, 2008, 451, 652-657.
- 2 R. Mukherjee, A. V. Thomas, A. Krishnamurthy and N. Koratkar, *ACS Nano*, 2012, **6**, 7867–7878.
- 3 X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen, Y. Zhong, D.-M. Tang, H. Li, T. Zhai, L. Li, Y. Bando and D. Golberg, *Adv. Funct. Mater.*, 2012, **22**, 2682–2690.
- 4 X. Wang, W. Tian, D. Liu, C. Zhi, Y. Bando and D. Golberg, *Nano Energy*, 2013, **2**, 257–267.
- 5 B. Li, H. Cao, J. Shao, G. Li, M. Qu and G. Yin, *Inorg. Chem.*, 2011, **50**, 1628–1632.

- 6 H. Wang, L.-F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson,
 Y. Liang, Y. Cui and H. Dai, *J. Am. Chem. Soc.*, 2010, 132, 13978–13980.
- 7 C.-H. Yim, E. A. Baranova, F. M. Courtel, Y. Abu-Lebdeh and I. J. Davidson, *J. Power Sources*, 2011, **196**, 9731–9736.
- 8 J. Chen, L. Xu, W. Li and X. Gou, *Adv. Mater.*, 2005, **17**, 582–586.
- 9 Z. Wang, D. Luan, S. Madhavi, C. Ming Li and X. Wen Lou, *Chem. Commun.*, 2011, 47, 8061–8063.
- 10 Y. NuLi, P. Zhang, Z. Guo, P. Munroe and H. Liu, *Electrochim. Acta*, 2008, **53**, 4213–4218.
- 11 H. S. Kim, Y. Piao, S. H. Kang, T. Hyeon and Y.-E. Sung, *Electrochem. Commun.*, 2010, **12**, 382–385.
- 12 C. Wu, P. Yin, X. Zhu, C. OuYang and Y. Xie, *J. Phys. Chem. B*, 2006, **110**, 17806–17812.
- 13 B. Koo, H. Xiong, M. D. Slater, V. B. Prakapenka, M. Balasubramanian, P. Podsiadlo, C. S. Johnson, T. Rajh and E. V. Shevchenko, *Nano Lett.*, 2012, 12, 2429–2435.
- 14 J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang and X. W. Lou, J. Am. Chem. Soc., 2010, 132, 13162–13164.
- 15 Y. Li, S. Zhu, Q. Liu, J. Gu, Z. Guo, Z. Chen, C. Feng, D. Zhang and W.-J. Moon, *J. Mater. Chem.*, 2012, **22**, 2766–2773.
- 16 X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M. N. Banis, Y. Li, J. Yang, R. Li, X. Sun, M. Cai and M. W. Verbrugge, *Adv. Funct. Mater.*, 2012, **22**, 1647–1654.
- 17 L. Tian, Q. Zhuang, J. Li, C. Wu, Y. Shi and S. Sun, *Electrochim. Acta*, 2012, **65**, 153–158.
- 18 H.-C. Tao, L.-Z. Fan, X. Yan and X. Qu, *Electrochim. Acta*, 2012, **69**, 328–333.
- 19 Y. J. Mai, J. P. Tu, C. D. Gu and X. L. Wang, *J. Power Sources*, 2012, **209**, 1–6.
- 20 Y. J. Mai, S. J. Shi, D. Zhang, Y. Lu, C. D. Gu and J. P. Tu, J. Power Sources, 2012, 204, 155–161.

- 21 J. Su, M. Cao, L. Ren and C. Hu, *J. Phys. Chem. C*, 2011, **115**, 14469–14477.
- 22 F. Xia, X. Hu, Y. Sun, W. Luo and Y. Huang, *Nanoscale*, 2012, 4, 4707–4711.
- 23 S. Bai, S. Chen, X. Shen, G. Zhu and G. Wang, *RSC Adv.*, 2012, 2, 10977–10984.
- 24 X. Zhu, Y. Zhu, S. Murali, M. D. Stoller and R. S. Ruoff, *ACS Nano*, 2011, **5**, 3333–3338.
- 25 F. Zhang, H. Cao, D. Yue, J. Zhang and M. Qu, *Inorg. Chem.*, 2012, **51**, 9544–9551.
- 26 X. Zhou, Y.-X. Yin, L.-J. Wan and Y.-G. Guo, *Chem. Commun.*, 2012, **48**, 2198–2200.
- 27 C. Wang, D. Li, C. O. Too and G. G. Wallace, *Chem. Mater.*, 2009, **21**, 2604–2606.
- 28 S. Park and R. S. Ruoff, Nat. Nanotechnol., 2009, 4, 217-224.
- 29 W. Chen, S. Li, C. Chen and L. Yan, *Adv. Mater.*, 2011, 23, 5679–5683.
- 30 B. Sun, J. Horvat, H. S. Kim, W.-S. Kim, J. Ahn and G. Wang, J. Phys. Chem. C, 2010, 114, 18753–18761.
- 31 Y. Zou, J. Kan and Y. Wang, J. Phys. Chem. C, 2011, 115, 20747–20753.
- 32 G.-W. Zhou, J. Wang, P. Gao, X. Yang, Y.-S. He, X.-Z. Liao, J. Yang and Z.-F. Ma, *Ind. Eng. Chem. Res.*, 2013, 52, 1197– 1204.
- 33 C. Combelles, M. B. Yahia, L. Pedesseau and M.-L. Doublet, J. Phys. Chem. C, 2010, 114, 9518–9527.
- 34 W. Xiao, Z. Wang, H. Guo, X. Li, J. Wang, S. Huang and L. Gan, *Appl. Surf. Sci.*, 2013, 266, 148–154.
- 35 J. Liu, Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, Y. Hu and X. Huang, *Chem. Mater.*, 2010, **22**, 212-217.
- 36 J. Ma, J. Lian, X. Duan, X. Liu and W. Zheng, J. Phys. Chem. C, 2010, 114, 10671–10676.
- 37 H. Xiang, K. Zhang, G. Ji, J. Y. Lee, C. Zou, X. Chen and J. Wu, *Carbon*, 2011, 49, 1787–1796.