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Porous WC nanoplates (PWCPs) were synthesized by a nitridi-
zation-carbonization process using WO3 nanoplates as the pre-
cursor for morphological control. The WO3 nanoplates were
derived from tungstate-based inorganic-organic hybrid belts. The
synthesis of PWCPs involved a nitridization reaction of WO3

nanoplates in NH3 at 650°C for 2 h, followed by a carbonization
reaction in a CO/CO2 (10:1, v/v) mixture at 750°C for 10 h.
The as-obtained product is a pure hexagonal WC phase with a
plate-like and porous morphology. The aggregates of the
PWCPs with dimensions of (100–300) 3 (10–30) nm form a
house-of-card structure with open channels and high-specific sur-
face areas, and can act as potential supports of electrocatalysts
for high-performance fuel cells.

I. Introduction

T UNGSTEN carbide (WC) nanostructures and their nano-
composites have attracted increasing attention in electro-

catalytical applications for fuel cells due to their Pt-like
electrical structure and their synergistic effect with other
metal clusters.1–3 For electrocatalytical applications, high sur-
face areas and good dispersibility are essential requirements.
To achieve this purpose, many groups have developed various
methods to prepare nanoscale WC nanocrystals, including
WC nanoparticles on support,4–6 free-standing WC nanoparti-
cles,7,8 mesoporous WC nanochains,9 WC nanofibers,10 WC
nanorods and nanopatelets,11 hollow WC microspheres,12

three-dimensionally ordered macroporous WC,13 hierarchical
WC micro/nanocrystals,14 and inverse opal WC nanostruc-
tures.15 However, morphology-controlled synthesis of low-
dimensional tungsten carbide nanostructures (e.g., nanoplates)
with high surface areas and high redispersibility is still a harsh
challenge.

We here introduce an efficient approach to synthesize por-
ous WC nanoplates (PWCPs) with large diameter-to-thickness

ratios and high specific surface areas on the basis of topochem-
ical conversion and intercalation chemistry.16–18 Essentially,
the PWCPs are synthesized via a two-step nitridization-
carbonization method using two-dimensional WO3 nanoplates
as intermediates for morphological control. This method is
cost-effective, easy to control, and suitable for large-scale
production.

II. Experimental Procedure

The WO3 nanoplates were synthesized according to our
previous report.17 Typically, H2W2O7�xH2O (~5 g) was dis-
persed in a mixture of n-octylamine (~33 mL) and heptane
(160 mL) under magnetic stirring, and kept reacting for
3 d. After the reaction, a white solid, i.e., the THBs, was
collected and dried. The as-obtained THBs (~5 g) were dis-
persed in a HNO3 aqueous solution (~6 mol/L, 150 mL)
and kept stirring for 2 d at room temperature. The solid
was collected, washed, and dried at 120°C. The yellow
powders obtained, H2WO4 nanoplates, were calcined at
400°C for 2 h in air to synthesize WO3 nanoplates.

The WO3 nanoplates (~0.5 g) were uniformly covered on
the surface of a rectangular Al2O3 plate (128 mm 9 29 mm
9 4 mm), which was then horizontally put in a semicylin-
drical Al2O3 boat (u 42 mm 9 29 mm 9 5 mm). The boat
with WO3 nanoplates was carefully pushed to the center of
a quartz tube (u 46 mm 9 600 mm) of a horizontal tubu-
lar furnace. After sealing carefully, the furnace was firstly
purged with CO2 gas (100 mL/min) for 20 min to dis-
charge the residual air. Then, the CO2 gas was switched to
NH3 gas (100 mL/min), and the furnace was heated
to 500°C with a rate of 25°C/min, and then to 650°C with
a rate of 10°C/min. The nitridization reaction was kept
for 2 h at 650°C. The NH3 gas was then changed to a
CO/CO2 mixture (100 mL/min, VCO:VCO2 = 10:1) and the
temperature was increased to 750°C (heating rate: 10°C/min),
at which the carbonization reaction was kept for another
10 h. Finally, the sample (e.g., PWCPs) was cooled and
collected for characterization.

\XRD (CuKa; ZHJ XPERT PRO, China 2), SEM (JEOM-
6700F, Japan 3; 4), TEM (200 kV; Tecnai-G20 3; 4), N2 adsorption-
desorption (Nova 4200a 5), TG-DTA (Netzsch STA409PC,
Germany 6; 7), and FT-IR (Nicolet460 6; 7) were used to characterize
the as-obtained PWCPs and their precursors.
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III. Results and Discussion

Figure 1(a) shows an XRD pattern of the WO3 nanoplates
obtained from a tungstate-based inorganic-organic hybrid
compound, formed via acid-base reactions between
H2W2O7�xH2O and n-octylamine.18 As the XRD pattern in
the inset of Fig. 1(a) shows, the hybrid has a serials of peaks
located in the low 2h range (less than 25°), and the peaks are
attributable to (00l) deflections, characteristic of a highly-
ordered lamellar structure with an interlayer distance of
2.597(2) nm.18 As the SEM image in Fig. 2(a) shows, the
as-obtained hybrid consists of a one-dimensional belt-like
structure, being 10–50 lm long and 0.5–1 lm in apparent
diameter. The TG-DTA and FT-IR analyses (not shown)
indicated that the belts are of an inorganic-organic hybrid
lamellar structure, alternately stacking inorganic W–O layers
and organic amine layers.18 The WO3 nanoplates were syn-
thesized by selectively removing the organic species from the
hybrid belts.17 The as-obtained WO3 nanoplates are indexed
to a monoclinic WO3 phase (JCPDS no. 43-1035) according
to the XRD pattern [Fig. 1(a)]. Figure 2(b) shows a SEM
image of the as-obtained WO3 nanoplates, which is loosely
assembled to form a house-of-card structure with high
surface areas.17

The WC sample (PWCPs) derived from the as-obtained
WO3 nanoplates shows three strongest peaks located at
31.4°, 35.6°, and 48.3° in its XRD pattern [Fig. 1(b)], being
indexed to (001), (100), and (101) deflections of a hexagonal
WC phase (JCPDS no. 25-1047, a = 2.9062 and
c = 2.8378 Å), respectively. Other weak peaks (not shown) in
the XRD pattern are also in good agreement with the hexag-
onal WC phase, and no peaks belong to impurities. The cal-
culated cell parameters [a = 2.896(3) and c = 2.847(8) Å] are
close to the literature data. The SEM image in Fig. 2(c)
shows that the WC sample consists of uniform plate-like par-
ticles, similar to their precursor of WO3 nanoplates [Fig. 2(b)].
The high-magnification SEM image in Fig. 2(d) indicates that
the WC nanoplates, with dimensions of 200–500 nm in areas
and 10–30 nm in thicknesses, are of pores with various sizes.

Figure 3 shows the TEM observatons of the porous WC
nanoplates (PWCPs). A low-magnification TEM image in
Fig. 3(a) confirms that a WC nanoplate consists of small
particles overlapped on one another, forming a quasi two-
dimensional and porous morphology. The corresponding
high-magnification TEM image [Fig. 3(b)] indicates that the
PWCPs consist of interconnected nanoparticles with a size
range of 10–20 nm. A high-resolution TEM image in

Fig. 3(c) shows ordered lattice fringes with a lattice spacing
of ~0.25 nm, attributable to the (100) planes of hexagonal
WC phase. The corresponding SAED pattern in Fig. 3(d)
shows a series of discontinuous diffraction rings belonging to
hexagonal WC phase. The elements of the sample determined
by EDS spectra are W and C. The TG-DTA curves (not
shown) of the PWCPs had a mass gain of 12.4% and exo-
thermic peak at 420°C–486°C, mainly due to the oxidation
of WC, besides a small amount of residual carbon. The mass
fraction of the residual carbon was calculated to be ~4.5 wt%
according to the TG-DTA analysis.

Figure 4 shows the N2 adsorption-desorption isotherm
curves and pore-size distribution of the as-obtained PWCPs.
The N2 adsorption-desorption isotherm is of type IV, and
the high absorption at high relative pressure (P/P0) range
(approaching 1.0) suggests the formation of large mesopores

(a)

(b)

Fig. 1. (a) XRD pattern of the WO3 nanoplates derived from the
tungstate-based inorganic–organic hybrid belts (THBs); (b) XRD
pattern of the porous WC nanoplates (PWCPs) derived from the
WO3 nanoplates. The inset is the XRD pattern of the (THBs).

(a) (b)

(c) (d)

Fig. 2. SEM images of (a) the tungstate-based inorganic–organic
hybrid belts (THBs) and the corresponding (b) WO3 nanoplates and
(c–d) porous WC nanoplates (PWCPs) derived from the THBs.

(a) (b)

(c) (d)

Fig. 3. (a–b) TEM images, (c) HR-TEM image, and (d) SAED
pattern of the porous WC nanoplates derived from the tungstate-
based hybrid belts.
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(2–50 nm) and macropores (>50 nm) in the PWCPs sam-
ple.19–21 The shape of hysteresis loops is of type H3, associ-
ated with aggregates of plate-like particles, giving rise to
slit-like pores.21 The low-pressure hysteresis also indicates
that the PWCPs contain some micropores (<2 nm).21 Actu-
ally, the pore-size distribution (the inset of Fig. 4) confirms
that there are three types of pores: macropores (50 < u <
500 nm), micropores, and mesopores (u <50 nm).21 The
micropores and mesopores mainly are due to the in-plane
pores of an individual WC nanoplate [Figs. 3(a)–(b)], whereas
the macropores are mainly caused by the house-of-card struc-
ture of the aggregated PWCPs [Fig. 2(d)]. The specific surface
area of the PWCPs is 19.5 m2/g according to the multipoint
BET plot.

The formation of the PWCPs may involve the essential
reactions as shown in Eqs. 1–2.8,16–18 The plate-like shape is
inherited from the WO3 nanoplates to WC nanoplates via a
tungsten nitride.16 The formation mechanism of the microp-
ores and mesopores in PWCPs can be understood from the
following aspects: (1) the shrinkage in volume during the
conversion from monoclinic WO3 (7.2 g/cm3) to b-W2N, and
then to hexagonal WC (15.6 g/cm3) due to the difference in
density and (2) the framework support effect of the solid
plate-like morphology which prevent the mass transfer
during the nitridization and carbonization reactions. The
synergistic effect of the shrinkage in volume and the steric
hindrance of plate-like morphology in mass transfer facili-
tate the formation of porous WC nanoplates from WO3

nanoplates.8,16

W-containing hybrid belts �����������!
HNO3 ; then 400�C

WO3 nanoplates

ð1Þ

WO3 nanoplates ���������!
NH3; 650

�C=2 h

b�W2N ����������������!
CO=CO2ð10:1Þ; 750

�C=10 h
porous WC nanoplates

ð2Þ

The carbonization temperature and CO2/CO ratios have
important effects on the formation of pure WC phase, and
low temperature (<750°C) or high CO2/CO ratios (>10:1) are
unfavorable in the synthesis of WC. The subprocess of
nitridization plays a key role in the formation of porous
morphology by refining the grains of WC phase.8,16 The
plate-like shape of the WO3 precursor is necessary for the

formation of WC nanoplates via a topochemical conversion,
and the precursors with other morphologies are not easy to
produce porous WC nanoplates.8,11,14

IV. Conclusions

Porous WC nanoplates with high surface areas have been
synthesized for the first time by a topochemical conversion
process, involving a nitridization reaction at 650°C in
NH3 and a carbonization reaction at 750°C in a mixture
of CO/CO2. The WC nanoplates obtained have in-plane
micropores, mesopores (<50 nm), and macropores from their
aggregates with a house-of-card structure. The porous WC
nanoplates can be used as potential supports for high-perfor-
mance electrocatalysts.
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