上海硅酸盐所  |  中国科学院  
首 页
 
当前位置:首页> 学术交流
Decoding the Materials Genome via Comprehending “2-D Interfacial Phases”
发布时间:2023-12-21

  SEMINAR
The State Key Lab of
High Performance Ceramics and Superfine Microstructure
Shanghai Institute of Ceramics, Chinese Academy of Sciences

  中 国 科 学 院 上 海 硅 酸 盐 研 究 所 高 性 能 陶 瓷 和 超 微 结 构 国 家 重 点 实 验 室

  Decoding the Materials Genome via Comprehending “2-D Interfacial Phases”

  Prof. Jian Luo

  University of California, San Diego

  时间:2016年8月19日(星期五)上午10: 00

  地点: 2号楼607会议室(国家重点实验室)

  欢迎广大科研人员和研究生参与讨论!

  联系人:史 迅(2803)

  Abstract

  A piece of ice melts at 0 ?C, but a nanometer-thick surface layer of the ice can melt at tens of degrees below zero. This phenomenon, known as “premelting,” was first recognized by the physicist Michael Faraday. Materials scientists have discovered that the surfaces and interfaces in engineered materials can exhibit more complex phase-like behaviors at high temperatures, which can affect the fabrication and properties of a broad range of metallic alloys and ceramic materials. Specifically, recent studies of 2-D grain-boundary (GB) phases (also called “complexions”) shed light on several long-standing mysteries in materials science, including the origins and atomic-level mechanisms of activated sintering, liquid metal embrittlement, and abnormal grain growth. Since bulk phase diagrams are one of the most useful tools for materials design, it is conceived that interfacial “phase” diagrams can be developed as a generally-useful materials science tool, in support of the Materials Genome Initiative.

  Our recent efforts include (a) combining a genetic algorithm with hybrid Monte Carlo and molecular dynamics simulation to reveal the atomistic detail of GB phase-like transformation, (b) stabilizing nanocrystalline alloys at high temperatures using high-entropy GB complexions, and (c) utilizing GB and analogous surface complexions (2-D interfacial phases) in ceramics to improve the performance of batteries, supercapacitors, photocatalysts, and various (oxygen-ion, proton, Li and Na) solid electrolytes.

  If time permits, I will also briefly discuss our recent studies on (1) understanding the mechanisms of flash sintering, where we have (1-a) theoretically developed a model to reveal the flash mechanism and predict onset flash temperature with a precision of ? ?6 ?C and (1-b) practically achieved, e.g., the sintering of ZnO to >97% density at an extremely low furnace temperature of < 120 ?C in ~30 seconds, and (2) fabrication of an entirely-new class of high-entropy, ultra-high-temperature ceramics.

  Brief Introduction

  Jian Luo graduated from Tsinghua University with dual Bachelor's degrees. After receiving his M.S. and Ph.D. degrees from M.I.T., Luo worked in the industry for more than two years with Lucent Technologies and OFS/Fitel. In 2003, he joined the Clemson faculty, where he served as an Assistant/Associate/Full Professor of Materials Science and Engineering. In 2013, he moved to UCSD as a Professor of NanoEngineering and Professor of Materials Science and Engineering. He received a National Science Foundation CAREER award in 2005 (from the ceramics program) and an Air Force Office of Scientific Research Young Investigator award in 2007 (from the metallic materials program). Luo was named as a National Security Science and Engineering Faculty Fellow in 2014 and elected as a Fellow of the American Ceramic Society in 2016.

 
 
【打印本页】【关闭本页】
版权所有 © 中国科学院上海硅酸盐研究所  沪ICP备05005480号-1    沪公网安备 31010502006565号
地址:上海市长宁区定西路1295号 邮政编码:200050