SEMINAR
The State Key Lab of
High Performance Ceramics and Superfine Microstructure
Shanghai Institute of Ceramics, Chinese Academy of Sciences
中 国 科 学 院 上 海 硅 酸 盐 研 究 所 高 性 能 陶 瓷 和 超 微 结 构 国 家 重 点 实 验 室
Probe-based technique: A pathway to control multiple ferroic orders at nanoscale
张金星 教授
北京师范大学 物理系
时间:2015年7月9日(星期四)上午 10:00
地点:2号楼607会议室(国家重点实验室)
欢迎广大科研人员和研究生参与讨论!
联系人:郑仁奎(1205)
报告摘要:
Due to the upcoming demands of the next-generation electronic devices with low energy consumption and high storage density, emerging correlated materials (such as superconductors, topological insulators, magnetoelectric multiferroics etc.) are highly desired. Recently, especially for the last decades, multiferroics attract people’s interests due to their relatively high transition temperature and being chemically robust at ambient atmosphere. These give people a strong push to explore strong coupling between multiferroic orders (magnetism, ferroelectricity and ferroelasticity) at room temperature. A great challenge would be how to achieve the nanoscale control of the above multiple ferroic orders with low energy consumption.
In this talk, I will introduce a brand-new strategy to deterministically switch the multiferroic orders using a nanoscale probe-based technique. I will show how to control the local spin structure, elastic modulus and photo-electric behavior in multiferroic structures such as hetero-interface, domain walls and/or phase boundaries. Taking advantage of those multiferroic model systems, we are able to have opportunities to better understand and control the emerging coupling of orders parameters across the nanoscale tip/oxide interfaces. These reversible controls of the electric, magnetic and elastic orders using a probe-based technique also demonstrate possible applications in future electronic and magnetoelectronic devices.
报告人介绍:
张金星,男,1981年5月生,博士生导师,研究员。2009 年12 月毕业于香港理工大学应用物理系并获理学博士学位,其中2008 年8 月到2009 年11 月在加州大学伯克利分校材料系访问研究并在伯克利完成博士论文。博士毕业后留在加州大学物理系从事博士后研究(合作导师R.Ramesh教授)。2012年2月被北京师范大学以海外高层次人才引进,目前为北京师范大学物理系研究员。2013年9月获得国家自然基金委优秀青年基金。
在北京师范大学和加州大学伯克利分校期间,张金星的主要研究方向是过渡金属氧化物薄膜的外延生长,关联体系尤其纳米尺度下表面界面处新奇特性的探测与调控,及其在信息技术、能源转化、传感驱动等方面的应用,已取得了一系列创新成果。近五年来,在国家自然科学基金委和美国Intel公司资助下,以通讯作者在Nature Nanotechnology(1篇),Nature Communications(1篇),Physical Review Letters(1篇),Advanced Functional Materials(1篇),Scientific Report(1篇)等重要期刊发表和接受论文10余篇,其中包括受邀请在Nanoscale上撰写1篇Review Article。并以合作作者在Science, Nature Materials, Nature Nanotechnology,Physical Review Letters, Proceedings of National Academy of Science上发表论文20余篇。5年共发表论文35篇,SCI引用1500次左右。曾多次在相关领域的重要国际大会上做邀请报告。2008年在第13届香港物理学会获得Outstanding Presentation Award,2011年获美国MRS春季会议Outstanding Poster Award。
Recent selected publications
1. Y. J. Li, J. J. Wang, J. C. Ye, X. Ke, G. Y. Gou, Y. Wei, F. Xue, J. Wang, C. S. Wang, R. Peng, X.L Deng, Y. Yang, X. Ren, L-Q. Chen, C-W. Nan and Jinxing Zhang*, "Mechanical Switching of Nanoscale Multiferroic Phase Boundaries",Advanced Functional Materials, DOI: 10.1002/adfm.201500600 (2015).
2. J. Wang, L. S. Xie, C. S. Wang, H. Z. Zhang, L. Shu, J. Bai, Y. S. Chai, X. Zhao, J. C. Nie, C. B. Cao, C. Z. Gu, C. M. Xiong, Y. Sun, J. Shi, S. Salahuddin, K. Xia, C. W. Nan and Jinxing Zhang*, “Magnetic Domain-wall Motion Twisted by Nanoscale Probe-induced Spin Transfer”, Physical Review B, 90, 224407 (2014).
3. Jinxing Zhang*, Xiaoxing Ke*, Gaoyang Gou, Jan Seidel, Bin Xiang, Pu Yu, Wen-I. Liang, Andrew M. Minor, Ying-Hao Chu, Gustaaf Van Tendeloo, Xiaobing Ren, Ramamoorthy Ramesh, “A Nanoscale Shape Memory Oxide”, Nature Communications 4, 2768 (2013).
4. Jinxing Zhang*, B. Xiang, Q. He, J. Seidel, R.J. Robert, P. Yu, S.Y. Yang, C.H. Wang, Y.-H. Chu, L.W. Martin, A.M. Minor, and R. Ramesh,“Large Field-induced Strains in a Lead-free Piezoelectric Material”, Nature Nanotechnology, 6, 98 (2011).
5. Jinxing Zhang*, Q. He, M. Trassin, W. Luo, D. Yi, M. D. Rossell, P. Yu, L. You, C. H. Wang, C. Y. Kuo, J. T. Heron, Z. Hu, R. J. Zeches, H. J. Lin, A. Tanaka, C. T. Chen, L. H. Tjeng, Y.-H. Chu, R. Ramesh,“Microscopic Origin of Giant Ferroelectric Polarization in Tetragonal-like BiFeO3”, Physical Review Letters, 107, 147602 (2011).